Up to now, only few works focused on the meteorological context leading to the production of Terrestrial Gamma ray Flashes (TGFs). In this study, we carry out, for the first time, an analysis on large scale of the meteorological scenario linked to 278 TGFs detected by RHESSI, AGILE, and Fermi, by using the Meteosat Second Generation geostationary satellites. These satellites are useful as they continuously monitor the same geographic region in time, allowing investigations on thunderstorms' development; moreover, they are endowed with channels and products that provide information about the meteorological context under analysis, such as the cloud top temperature and altitude, the cloud extension, the drop effective radius and the cloud phase. Our work confirms what previously found in other studies about the TGF-associated thunderstorms, by using a different approach and by using for the first time the Meteosat satellites: we find TGFs mostly linked to the development phase of deep convective thunderstorm systems, exhibiting typical characteristics of tropical storms, and providing a first picture on large scale of the TGF-associated thunderstorm systems.

Analysis of Thunderstorms Producing Terrestrial Gamma Ray Flashes With the Meteosat Second Generation / A. Ursi, M. Marisaldi, S. Dietrich, M. Tavani, A. Tiberia, F. Porcù. - In: JOURNAL OF GEOPHYSICAL RESEARCH. - ISSN 0148-0227. - STAMPA. - 124:(2019), pp. 1-16. [10.1029/2018JD030149]

Analysis of Thunderstorms Producing Terrestrial Gamma Ray Flashes With the Meteosat Second Generation

F. Porcù
Investigation
2019

Abstract

Up to now, only few works focused on the meteorological context leading to the production of Terrestrial Gamma ray Flashes (TGFs). In this study, we carry out, for the first time, an analysis on large scale of the meteorological scenario linked to 278 TGFs detected by RHESSI, AGILE, and Fermi, by using the Meteosat Second Generation geostationary satellites. These satellites are useful as they continuously monitor the same geographic region in time, allowing investigations on thunderstorms' development; moreover, they are endowed with channels and products that provide information about the meteorological context under analysis, such as the cloud top temperature and altitude, the cloud extension, the drop effective radius and the cloud phase. Our work confirms what previously found in other studies about the TGF-associated thunderstorms, by using a different approach and by using for the first time the Meteosat satellites: we find TGFs mostly linked to the development phase of deep convective thunderstorm systems, exhibiting typical characteristics of tropical storms, and providing a first picture on large scale of the TGF-associated thunderstorm systems.
2019
Analysis of Thunderstorms Producing Terrestrial Gamma Ray Flashes With the Meteosat Second Generation / A. Ursi, M. Marisaldi, S. Dietrich, M. Tavani, A. Tiberia, F. Porcù. - In: JOURNAL OF GEOPHYSICAL RESEARCH. - ISSN 0148-0227. - STAMPA. - 124:(2019), pp. 1-16. [10.1029/2018JD030149]
A. Ursi, M. Marisaldi, S. Dietrich, M. Tavani, A. Tiberia, F. Porcù
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/709442
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact