The mechanochemical reaction of urea and catechol affords the quantitative formation of a 1:1 urea·catechol (URCAT) cocrystal that can act simultaneously as a urease inhibitor and as a soil fertilizer. The novel compound has been characterized using solid-state methods, and its environmental activity has been assessed using the inhibition of Canavalia ensiformis urease and water vapor sorption experiments at room temperature. The urea molecules within the cocrystal were organized in hydrogen-bonded dimers bridged by two catechol molecules, with the OH groups interacting via hydrogen bonds with the urea carbonyl groups. The inhibition of jack bean urease enzyme by URCAT led to the complete loss of urease activity after a 20 min incubation period. A large difference of water vapor adsorption was observed between urea and URCAT, with the latter adsorbing 3.5 times less water than urea. Our results suggested that cocrystal engineering strategies can be successfully applied to tackle sustainability problems at the food-energy-water nexus.

Novel Dual-Action Plant Fertilizer and Urease Inhibitor: Urea·Catechol Cocrystal. Characterization and Environmental Reactivity

Casali L.
Membro del Collaboration Group
;
Mazzei L.
Membro del Collaboration Group
;
Shemchuk O.
Membro del Collaboration Group
;
Grepioni F.
Membro del Collaboration Group
;
Ciurli S.
Membro del Collaboration Group
;
Braga D.
Membro del Collaboration Group
;
2019

Abstract

The mechanochemical reaction of urea and catechol affords the quantitative formation of a 1:1 urea·catechol (URCAT) cocrystal that can act simultaneously as a urease inhibitor and as a soil fertilizer. The novel compound has been characterized using solid-state methods, and its environmental activity has been assessed using the inhibition of Canavalia ensiformis urease and water vapor sorption experiments at room temperature. The urea molecules within the cocrystal were organized in hydrogen-bonded dimers bridged by two catechol molecules, with the OH groups interacting via hydrogen bonds with the urea carbonyl groups. The inhibition of jack bean urease enzyme by URCAT led to the complete loss of urease activity after a 20 min incubation period. A large difference of water vapor adsorption was observed between urea and URCAT, with the latter adsorbing 3.5 times less water than urea. Our results suggested that cocrystal engineering strategies can be successfully applied to tackle sustainability problems at the food-energy-water nexus.
2019
Casali L.; Mazzei L.; Shemchuk O.; Sharma L.; Honer K.; Grepioni F.; Ciurli S.; Braga D.; Baltrusaitis J.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/708862
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 40
social impact