We study the strain and stress fields produced by temperature and pore pressure increases within and outside a Thermo-Poro-Elastic (TPE) inclusion (the source region), embedded within a medium (the matrix) in isothermal drained conditions. This model is suitable to describe a crustal region in a volcanic environment pervaded by hot pressurized fluids released by an underlying magma chamber. After introducing the pertinent constitutive relations, a formal solution for the displacement field is provided in terms of the Green’s function for an elastic medium with drained isothermal elastic moduli, employing a generalization of Eshelby (1961) procedure. If an unbounded medium is considered, a displacement potential can be introduced, obeying the Laplace equation within the source region and the Poisson equation within the matrix. If a spherically symmetric source region is considered, simple analytical solutions are obtained for the displacement, the strain and the stress fields, showing that thrust faulting mechanisms are promoted within the source region while normal faulting mechanisms prevail in the embedding matrix. Employing reasonable numerical values for the thermo-poro-elastic parameters, suitable to describe highly porous sedimentary rock, strain and stress variations are found to be significant even for moderate changes of temperature and pore pressure. Variations of the Coulomb failure function are high in the TPE region and are strongly dependent on the friction coefficient and pore pressure. Application of these results to the 1982-84 and 2011-13 unrest episodes at Campi Flegrei caldera (Italy) suggests that an oblique dike intrusion across a previously unfaulted TPE region took place with a mixed tensile-thrust dislocation mechanism in both events, as previously inferred from accurate inversion of geodetic data.

Stress heterogeneities and failure mechanisms induced by temperature and pore-pressure increase in volcanic regions / Belardinelli M.E.; Bonafede M.; Nespoli M.. - In: EARTH AND PLANETARY SCIENCE LETTERS. - ISSN 0012-821X. - ELETTRONICO. - 525:(2019), pp. 115765.1-115765.10. [10.1016/j.epsl.2019.115765]

Stress heterogeneities and failure mechanisms induced by temperature and pore-pressure increase in volcanic regions

Belardinelli M. E.
;
Bonafede M.;Nespoli M.
2019

Abstract

We study the strain and stress fields produced by temperature and pore pressure increases within and outside a Thermo-Poro-Elastic (TPE) inclusion (the source region), embedded within a medium (the matrix) in isothermal drained conditions. This model is suitable to describe a crustal region in a volcanic environment pervaded by hot pressurized fluids released by an underlying magma chamber. After introducing the pertinent constitutive relations, a formal solution for the displacement field is provided in terms of the Green’s function for an elastic medium with drained isothermal elastic moduli, employing a generalization of Eshelby (1961) procedure. If an unbounded medium is considered, a displacement potential can be introduced, obeying the Laplace equation within the source region and the Poisson equation within the matrix. If a spherically symmetric source region is considered, simple analytical solutions are obtained for the displacement, the strain and the stress fields, showing that thrust faulting mechanisms are promoted within the source region while normal faulting mechanisms prevail in the embedding matrix. Employing reasonable numerical values for the thermo-poro-elastic parameters, suitable to describe highly porous sedimentary rock, strain and stress variations are found to be significant even for moderate changes of temperature and pore pressure. Variations of the Coulomb failure function are high in the TPE region and are strongly dependent on the friction coefficient and pore pressure. Application of these results to the 1982-84 and 2011-13 unrest episodes at Campi Flegrei caldera (Italy) suggests that an oblique dike intrusion across a previously unfaulted TPE region took place with a mixed tensile-thrust dislocation mechanism in both events, as previously inferred from accurate inversion of geodetic data.
2019
Stress heterogeneities and failure mechanisms induced by temperature and pore-pressure increase in volcanic regions / Belardinelli M.E.; Bonafede M.; Nespoli M.. - In: EARTH AND PLANETARY SCIENCE LETTERS. - ISSN 0012-821X. - ELETTRONICO. - 525:(2019), pp. 115765.1-115765.10. [10.1016/j.epsl.2019.115765]
Belardinelli M.E.; Bonafede M.; Nespoli M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/696541
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact