The static analysis of Kirchhoff nano plates subjected to uniformly (UDL) and sinusoidally (SSL) distributed load is computed. The strain gradient nonlocal theory has been employed in order to involve the size effects of nanostructures in classical continuum theory. The governing equation of motion of Kirchhoff in weak form are applied to nano plates, involving second-order strain gradient nonlocal theory. Thus, the obtained partial differential equations have an increased order of derivation respect to the classical theory, from the fourth to the sixth. The displacements are carried out following the Navier procedure for simply supported boundary conditions. Isotropic and antisymmetric orthotropic laminates, both cross- and angle-ply are studied, for different layouts involving different material properties. Dimensionless outcomes in terms of transverse displacements, and normal and shear stresses, are given to changing aspect ratio and non local ratio, also making a comparison with the classical theory.

Solution for cross- and angle-ply laminated Kirchhoff nano plates in bending using strain gradient theory

Fantuzzi, N.
;
2019

Abstract

The static analysis of Kirchhoff nano plates subjected to uniformly (UDL) and sinusoidally (SSL) distributed load is computed. The strain gradient nonlocal theory has been employed in order to involve the size effects of nanostructures in classical continuum theory. The governing equation of motion of Kirchhoff in weak form are applied to nano plates, involving second-order strain gradient nonlocal theory. Thus, the obtained partial differential equations have an increased order of derivation respect to the classical theory, from the fourth to the sixth. The displacements are carried out following the Navier procedure for simply supported boundary conditions. Isotropic and antisymmetric orthotropic laminates, both cross- and angle-ply are studied, for different layouts involving different material properties. Dimensionless outcomes in terms of transverse displacements, and normal and shear stresses, are given to changing aspect ratio and non local ratio, also making a comparison with the classical theory.
2019
Cornacchia, F.; Fantuzzi, N.; Luciano, R.; Penna, R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/691719
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 36
social impact