Sustainable management strategies for securing long–term supply of rare earth elements is priority for Europe due to a complex and interlinked production chain and its dependence on Chinese export. Among rare earth elements, neodymium captured most attention due to its essential role in a wide spectrum of applications including green–energy technologies such as wind turbines and electric vehicles. Being complementary to primary production, end–of–life recycling would diversify neodymium supply, relieve the Chinese dominance on primary production and contrast the balance problem. However, neodymium recycling at end–of–life is not yet in place. In this work, we developed a dynamic material flow model to investigate neodymium stocks and flows in the EU–28 to 2016. The analysis enabled a detailed investigation of secondary sources of neodymium, which set essential boundary conditions for material recovery and recycling. We found that roughly up to 50% of the annual neodymium demand in the EU–28 could be met by domestic secondary supply, if latent recycling potentials were turned into actual capacity. Significant energy savings and GHG emissions cut could be also attained. However, product design, end–of–life collection, and scrap price issues are primary obstacles to neodymium recovery. Thus, unless going beyong those limits, establishing and maintaining a sustainable recycling chain for neodymium in the EU–28 will remain problematic.

Recovering the “new twin”: Analysis of secondary neodymium sources and recycling potentials in Europe

Ciacci, Luca;Vassura, Ivano;Passarini, Fabrizio
2019

Abstract

Sustainable management strategies for securing long–term supply of rare earth elements is priority for Europe due to a complex and interlinked production chain and its dependence on Chinese export. Among rare earth elements, neodymium captured most attention due to its essential role in a wide spectrum of applications including green–energy technologies such as wind turbines and electric vehicles. Being complementary to primary production, end–of–life recycling would diversify neodymium supply, relieve the Chinese dominance on primary production and contrast the balance problem. However, neodymium recycling at end–of–life is not yet in place. In this work, we developed a dynamic material flow model to investigate neodymium stocks and flows in the EU–28 to 2016. The analysis enabled a detailed investigation of secondary sources of neodymium, which set essential boundary conditions for material recovery and recycling. We found that roughly up to 50% of the annual neodymium demand in the EU–28 could be met by domestic secondary supply, if latent recycling potentials were turned into actual capacity. Significant energy savings and GHG emissions cut could be also attained. However, product design, end–of–life collection, and scrap price issues are primary obstacles to neodymium recovery. Thus, unless going beyong those limits, establishing and maintaining a sustainable recycling chain for neodymium in the EU–28 will remain problematic.
2019
Ciacci, Luca*; Vassura, Ivano; Cao, Zhi; Liu, Gang; Passarini, Fabrizio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/685937
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 44
social impact