Berberine (BBR) is a common nutraceutical consumed by millions worldwide. BBR has many different effects on human health, e.g., diabetes, diarrhea, inflammation and now more recently it has been proposed to have potent anti-cancer effects. BBR has been shown to suppress the growth of cancer cells more than normal cells. BBR has been proposed to exert its growth-inhibitory effects by many different biochemical mechanisms including: suppression of cell cycle progression, induction of reactive oxygen species, induction of apoptosis and autophagy and interactions with DNA potentially leading to DNA damage, and altered gene expression. Pancreatic cancer is a leading cancer worldwide associated with a poor prognosis. As our population ages, pancreatic cancer has an increasing incidence and will likely become the second leading cause of death from cancer. There are few truly-effective therapeutic options for pancreatic cancer. Surgery and certain chemotherapeutic drugs are used to treat pancreatic cancer patients. Novel approaches to treat pancreatic cancer patients are direly needed as they usually survive for less than a year after being diagnosed. In the following manuscript, we discuss the abilities of BBR and certain chemically- modified BBRs (NAX compounds) to suppress growth of pancreatic cancer cells.

Abilities of berberine and chemically modified berberines to inhibit proliferation of pancreatic cancer cells.

Follo MY;Cocco L;Ratti S;Martelli AM;
2019

Abstract

Berberine (BBR) is a common nutraceutical consumed by millions worldwide. BBR has many different effects on human health, e.g., diabetes, diarrhea, inflammation and now more recently it has been proposed to have potent anti-cancer effects. BBR has been shown to suppress the growth of cancer cells more than normal cells. BBR has been proposed to exert its growth-inhibitory effects by many different biochemical mechanisms including: suppression of cell cycle progression, induction of reactive oxygen species, induction of apoptosis and autophagy and interactions with DNA potentially leading to DNA damage, and altered gene expression. Pancreatic cancer is a leading cancer worldwide associated with a poor prognosis. As our population ages, pancreatic cancer has an increasing incidence and will likely become the second leading cause of death from cancer. There are few truly-effective therapeutic options for pancreatic cancer. Surgery and certain chemotherapeutic drugs are used to treat pancreatic cancer patients. Novel approaches to treat pancreatic cancer patients are direly needed as they usually survive for less than a year after being diagnosed. In the following manuscript, we discuss the abilities of BBR and certain chemically- modified BBRs (NAX compounds) to suppress growth of pancreatic cancer cells.
Abrams SL, Follo MY, Steelman LS, Lertpiriyapong K, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Murata RM, Rosalen PL, Montalto G, Cervello M, Gizak A, Rakus D, Mao W, Lombardi P, McCubrey JA.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/683983
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact