The identification of the triggering mechanism of rainfall-induced, shallow landslides requires a complete understanding of the hydro-mechanical response of soil, which can be represented through the trends of the degree of soil saturation. In this paper, multiple annual cycles of soil saturation obtained through field monitoring were used to validate an empirical model based on climate data. Both field measurements and model outputs were used to conduct simplified slope stability analysis to evaluate the model chain capability in predicting the temporal occurrence of shallow failures. Field data were collected on a testsite slope located in Oltrepò Pavese (Northern Italy), where a shallow landslide occurred during the monitoring period. The experimental trends of the degree of saturation at various depths in the soil profile were compared with the calculated values and showed good agreement. Landslide triggering is reached when the soil is completely saturated. Both measured and modeled trends of soil saturation correctly identified the triggering time of the shallow landslide and the depth of the sliding surface, 1.0 m below the ground surface, in the test slope. The obtained results indicated the possibility of extending this approach for theassessment of the initiation time and the depth of shallow landslides, particularly for preliminary susceptibility evaluations, based on widely available climate data.

A Simplified Approach to Assess the Soil Saturation Degree and Stability of a Representative Slope Affected by Shallow Landslides in Oltrepò Pavese (Italy)

Bittelli, Marco;
2018

Abstract

The identification of the triggering mechanism of rainfall-induced, shallow landslides requires a complete understanding of the hydro-mechanical response of soil, which can be represented through the trends of the degree of soil saturation. In this paper, multiple annual cycles of soil saturation obtained through field monitoring were used to validate an empirical model based on climate data. Both field measurements and model outputs were used to conduct simplified slope stability analysis to evaluate the model chain capability in predicting the temporal occurrence of shallow failures. Field data were collected on a testsite slope located in Oltrepò Pavese (Northern Italy), where a shallow landslide occurred during the monitoring period. The experimental trends of the degree of saturation at various depths in the soil profile were compared with the calculated values and showed good agreement. Landslide triggering is reached when the soil is completely saturated. Both measured and modeled trends of soil saturation correctly identified the triggering time of the shallow landslide and the depth of the sliding surface, 1.0 m below the ground surface, in the test slope. The obtained results indicated the possibility of extending this approach for theassessment of the initiation time and the depth of shallow landslides, particularly for preliminary susceptibility evaluations, based on widely available climate data.
2018
Bordoni, Massimiliano; Valentino, Roberto; Meisina, Claudia; Bittelli, Marco; Chersich, Silvia
File in questo prodotto:
File Dimensione Formato  
Bordoni_etal_2018.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 5.81 MB
Formato Adobe PDF
5.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/683617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact