With decreasing temperature, Sr2VO4 undergoes two structural phase transitions, tetragonal-to-orthorhombic-to-tetragonal, without long-range magnetic order. Recent experiments suggest that only at very low temperature, Sr2VO4 might enter a yet-unknown phase with long-range magnetic order, but without orthorhombic distortion. By combining relativistic density functional theory with an extended spin-1/2 compass-Heisenberg model, we find an antiferromagnetic single-stripe ground state with highly competing exchange interactions, involving a non-negligible interlayer coupling, which places the system at the crossover between the XY-model and Heisenberg-model regimes. Most strikingly, we find a strong two-site "spin-compass" exchange anisotropy which is relieved by the orthorhombic distortion induced by the spin stripe order. Based on these results, we discuss the origin of the hidden-order phase and the possible formation of a spin liquid at low temperatures.

Competing magnetic interactions in a spin- 12 square lattice: Hidden order in Sr2VO4 / Kim, Bongjae; Khmelevskyi, Sergii; Mohn, Peter; Franchini, Cesare. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - STAMPA. - 96:18(2017), pp. 180405.1-180405.6. [10.1103/PhysRevB.96.180405]

Competing magnetic interactions in a spin- 12 square lattice: Hidden order in Sr2VO4

Franchini, Cesare
Supervision
2017

Abstract

With decreasing temperature, Sr2VO4 undergoes two structural phase transitions, tetragonal-to-orthorhombic-to-tetragonal, without long-range magnetic order. Recent experiments suggest that only at very low temperature, Sr2VO4 might enter a yet-unknown phase with long-range magnetic order, but without orthorhombic distortion. By combining relativistic density functional theory with an extended spin-1/2 compass-Heisenberg model, we find an antiferromagnetic single-stripe ground state with highly competing exchange interactions, involving a non-negligible interlayer coupling, which places the system at the crossover between the XY-model and Heisenberg-model regimes. Most strikingly, we find a strong two-site "spin-compass" exchange anisotropy which is relieved by the orthorhombic distortion induced by the spin stripe order. Based on these results, we discuss the origin of the hidden-order phase and the possible formation of a spin liquid at low temperatures.
2017
Competing magnetic interactions in a spin- 12 square lattice: Hidden order in Sr2VO4 / Kim, Bongjae; Khmelevskyi, Sergii; Mohn, Peter; Franchini, Cesare. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - STAMPA. - 96:18(2017), pp. 180405.1-180405.6. [10.1103/PhysRevB.96.180405]
Kim, Bongjae; Khmelevskyi, Sergii; Mohn, Peter; Franchini, Cesare
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/662136
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact