One of the aspects that makes difficult grinding processes modelling is the non-deterministic nature of the cutting tool, in particular the abrasive grains of the grinding wheel have a random distribution and an undefined geometry that influences the grinding forces. In order to develop a reliable 3D model of the grinding process the actual microgeometry of abrasive grains must be acquired. This paper compares the results of two different acquisition methods: the geometry acquired via a laser non-contact instrument is confronted with the one acquired using a computer tomography; the accuracy of the grain micro geometry provided by the two approaches is discussed.

Abrasive Grains Micro Geometry: A Comparison between Two Acquisition Methods

Guerrini, G.;Fortunato, A.;
2018

Abstract

One of the aspects that makes difficult grinding processes modelling is the non-deterministic nature of the cutting tool, in particular the abrasive grains of the grinding wheel have a random distribution and an undefined geometry that influences the grinding forces. In order to develop a reliable 3D model of the grinding process the actual microgeometry of abrasive grains must be acquired. This paper compares the results of two different acquisition methods: the geometry acquired via a laser non-contact instrument is confronted with the one acquired using a computer tomography; the accuracy of the grain micro geometry provided by the two approaches is discussed.
Procedia CIRP
302
306
Guerrini, G.*; Fortunato, A.; Bruzzone, A.A.; Daddona, D.M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/656762
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact