In this paper we study the Palais–Smale sequences of the conformal Dirac–Einstein problem. After we characterize the bubbling phenomena, we prove an Aubin type result leading to the existence of a positive solution. Then we show the existence of infinitely many solutions to the problem provided that the underlying manifold exhibits certain symmetries.
Titolo: | Characterization of the Palais–Smale sequences for the conformal Dirac–Einstein problem and applications |
Autore/i: | Maalaoui, Ali; Martino, Vittorio |
Autore/i Unibo: | |
Anno: | 2019 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jde.2018.08.037 |
Abstract: | In this paper we study the Palais–Smale sequences of the conformal Dirac–Einstein problem. After we characterize the bubbling phenomena, we prove an Aubin type result leading to the existence of a positive solution. Then we show the existence of infinitely many solutions to the problem provided that the underlying manifold exhibits certain symmetries. |
Data stato definitivo: | 2019-01-17T18:05:46Z |
Appare nelle tipologie: |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.