Signaling through β-adrenergic receptors drives cancer progression and β-blockers are being evaluated as a novel therapeutic strategy to prevent metastasis. Orthotopic mouse models of breast cancer show that β-adrenergic signaling induced by chronic stress accelerates metastasis, and that β2-adrenergic receptors on tumor cells are critical for this. Endogenous catecholamines are released during chronic stress: norepinephrine from the adrenal medulla and sympathetic nerves, and epinephrine from the adrenal medulla. β2-adrenergic receptors are much more sensitive to epinephrine than to norepinephrine. To determine if epinephrine is necessary in the effects of stress on cancer progression, we used a denervation strategy to eliminate circulating epinephrine, and quantified the effect on metastasis. Using both human xenograft and immune-intact murine models of breast cancer, we show that circulating epinephrine is dispensable for the effects of chronic stress on cancer progression. Measured levels of circulating norepinephrine were sufficiently low that they were unlikely to influence β2-adrenergic signaling, suggesting a possible role for norepinephrine release from sympathetic nerve terminals.

Circulating epinephrine is not required for chronic stress to enhance metastasis

Davide Martelli
Investigation
;
Robin M. McAllen
Conceptualization
;
2019

Abstract

Signaling through β-adrenergic receptors drives cancer progression and β-blockers are being evaluated as a novel therapeutic strategy to prevent metastasis. Orthotopic mouse models of breast cancer show that β-adrenergic signaling induced by chronic stress accelerates metastasis, and that β2-adrenergic receptors on tumor cells are critical for this. Endogenous catecholamines are released during chronic stress: norepinephrine from the adrenal medulla and sympathetic nerves, and epinephrine from the adrenal medulla. β2-adrenergic receptors are much more sensitive to epinephrine than to norepinephrine. To determine if epinephrine is necessary in the effects of stress on cancer progression, we used a denervation strategy to eliminate circulating epinephrine, and quantified the effect on metastasis. Using both human xenograft and immune-intact murine models of breast cancer, we show that circulating epinephrine is dispensable for the effects of chronic stress on cancer progression. Measured levels of circulating norepinephrine were sufficiently low that they were unlikely to influence β2-adrenergic signaling, suggesting a possible role for norepinephrine release from sympathetic nerve terminals.
2019
Adam K. Walker, Davide Martelli, Alexandra I. Ziegler, Gavin W. Lambert, Sarah E. Phillips, Stephen J. Hill, Robin M. McAllen, Erica K. Sloan
File in questo prodotto:
File Dimensione Formato  
Walker_2019.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 478.42 kB
Formato Adobe PDF
478.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/645167
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact