Nondeterministic Cellular Automata (NCA) are the class of multivalued functions characterized by nondeterministic block maps. We extend the notions of equicontinuity and sensitivity to multivalued functions and investigate the characteristics of equicontinuous, almost equicontinuous and sensitive NCA. The dynamical behavior of nondeterministic CA in these classes is much less constrained than in the deterministic setting. In particular, we show that there are transitive NCA with equicontinuous points and equicontinuous NCA that are not reversible.
Titolo: | Equicontinuity and sensitivity of nondeterministic cellular automata | |
Autore/i: | Di Lena, Pietro | |
Autore/i Unibo: | ||
Anno: | 2017 | |
Serie: | ||
Titolo del libro: | CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2017) | |
Pagina iniziale: | 81 | |
Pagina finale: | 96 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/978-3-319-58631-1_7 | |
Abstract: | Nondeterministic Cellular Automata (NCA) are the class of multivalued functions characterized by nondeterministic block maps. We extend the notions of equicontinuity and sensitivity to multivalued functions and investigate the characteristics of equicontinuous, almost equicontinuous and sensitive NCA. The dynamical behavior of nondeterministic CA in these classes is much less constrained than in the deterministic setting. In particular, we show that there are transitive NCA with equicontinuous points and equicontinuous NCA that are not reversible. | |
Data stato definitivo: | 22-apr-2020 | |
Appare nelle tipologie: |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.