The provision of an adequate network of urban infrastructures is essential to create clean and energy-efficient urban mobility systems. However, the urban infrastructure to support sustainable mobility can produce a substantial environmental burden if no life cycle environmental criteria are applied in its design and management. This paper demonstrates the potential to support energy-efficient and CO<inf>2</inf>-free pedestrian and electric bike (e-bike) mobility through the ecological design (eco-design) of urban elements. An eco-design approach is applied to reconceptualize a conventional pergola toward an eco-product (solar pergola). The solar pergola generates surplus photovoltaic electricity that provides a multifunctional character. According to the end-use of this energy, different scenarios are analyzed for robust decision-making. The deployment of solar pergolas can contribute to save from 2,080kg to over 47,185kg of CO<inf>2</inf> eq. and from 350,390MJ to over 692,760MJ eq. in 10 years, depending on the geographic emplacement (solar radiation and electricity grid system). These savings are equivalent to charging 2-9 e-bikes per day using clean energy. Instead of maximizing infrastructure deployment to shift to environmentally friendly modes of mobility, the implementation of multifunctional urban elements represents a key area of action in the context of smart city development.

Development of urban solar infrastructure to support low-carbon mobility / Mendoza, Joan-Manuel F.; Sanyé-Mengual, Esther; Angrill, Sara; García-Lozano, Raúl; Feijoo, Gumersindo; Josa, Alejandro; Gabarrell, Xavier; Rieradevall, Joan. - In: ENERGY POLICY. - ISSN 0301-4215. - STAMPA. - 85:(2015), pp. 102-114. [10.1016/j.enpol.2015.05.022]

Development of urban solar infrastructure to support low-carbon mobility

Sanyé-Mengual, Esther;
2015

Abstract

The provision of an adequate network of urban infrastructures is essential to create clean and energy-efficient urban mobility systems. However, the urban infrastructure to support sustainable mobility can produce a substantial environmental burden if no life cycle environmental criteria are applied in its design and management. This paper demonstrates the potential to support energy-efficient and CO2-free pedestrian and electric bike (e-bike) mobility through the ecological design (eco-design) of urban elements. An eco-design approach is applied to reconceptualize a conventional pergola toward an eco-product (solar pergola). The solar pergola generates surplus photovoltaic electricity that provides a multifunctional character. According to the end-use of this energy, different scenarios are analyzed for robust decision-making. The deployment of solar pergolas can contribute to save from 2,080kg to over 47,185kg of CO2 eq. and from 350,390MJ to over 692,760MJ eq. in 10 years, depending on the geographic emplacement (solar radiation and electricity grid system). These savings are equivalent to charging 2-9 e-bikes per day using clean energy. Instead of maximizing infrastructure deployment to shift to environmentally friendly modes of mobility, the implementation of multifunctional urban elements represents a key area of action in the context of smart city development.
2015
Development of urban solar infrastructure to support low-carbon mobility / Mendoza, Joan-Manuel F.; Sanyé-Mengual, Esther; Angrill, Sara; García-Lozano, Raúl; Feijoo, Gumersindo; Josa, Alejandro; Gabarrell, Xavier; Rieradevall, Joan. - In: ENERGY POLICY. - ISSN 0301-4215. - STAMPA. - 85:(2015), pp. 102-114. [10.1016/j.enpol.2015.05.022]
Mendoza, Joan-Manuel F.; Sanyé-Mengual, Esther; Angrill, Sara; García-Lozano, Raúl; Feijoo, Gumersindo; Josa, Alejandro; Gabarrell, Xavier; Rieradevall, Joan
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/619803
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
social impact