A network of seven two-dimensional video disdrometers (2DVD), which were operated during the Midlatitude Continental Convective Clouds Experiment (MC3E) in northern Oklahoma, are employed to investigate the spatial variability of raindrop size distribution (DSD) within the footprint of the dual-frequency precipitation radar (DPR) on board the National Aeronautics and Space Administration’s Global Precipitation Measurement (GPM) mission core satellite. One-minute 2DVD DSD observations were interpolated uniformly to 13 points distributed within a nearly circular DPR footprint through an inverse distance weighting method. The presence of deep continental showers was a unique feature of the dataset resulting in a higher mean rain rate R with respect to previous studies. As a measure of spatial variability for the interpolated data, a three-parameter exponential function was applied to paired correlations of three parameters of normalized gamma DSD, R, reflectivity, and attenuation at Ka- and Ku-band frequencies of DPR (Z_Ka, Z_Ku, k_Ka, and k_Ku, respectively). The symmetry of the interpolated sites allowed quantifying the directional differences in correlations at the same distance. The correlation distances d0 of R, k_Ka, and k_Ku were approximately 10 km and were not sensitive to the choice of four rain thresholds used in this study. The d0 of Z_Ku, on the other hand, ranged from 29 to 20 km between different rain thresholds. The coefficient of variation (CV) remained less than 0.5 for most of the samples for a given physical parameter, but a CV of greater than 1.0 was also observed in noticeable samples, especially for the shape parameter and Z_Ku.

A Field Study of Footprint-Scale Variability of Raindrop Size Distribution / Tokay, Ali; D’Adderio, Leo Pio; Porcù, Federico; Wolff, David B.; Petersen, Walter A.. - In: JOURNAL OF HYDROMETEOROLOGY. - ISSN 1525-755X. - STAMPA. - 18:(2017), pp. 3165-3179. [10.1175/JHM-D-17-0003.1]

A Field Study of Footprint-Scale Variability of Raindrop Size Distribution

PORCU', FEDERICO;
2017

Abstract

A network of seven two-dimensional video disdrometers (2DVD), which were operated during the Midlatitude Continental Convective Clouds Experiment (MC3E) in northern Oklahoma, are employed to investigate the spatial variability of raindrop size distribution (DSD) within the footprint of the dual-frequency precipitation radar (DPR) on board the National Aeronautics and Space Administration’s Global Precipitation Measurement (GPM) mission core satellite. One-minute 2DVD DSD observations were interpolated uniformly to 13 points distributed within a nearly circular DPR footprint through an inverse distance weighting method. The presence of deep continental showers was a unique feature of the dataset resulting in a higher mean rain rate R with respect to previous studies. As a measure of spatial variability for the interpolated data, a three-parameter exponential function was applied to paired correlations of three parameters of normalized gamma DSD, R, reflectivity, and attenuation at Ka- and Ku-band frequencies of DPR (Z_Ka, Z_Ku, k_Ka, and k_Ku, respectively). The symmetry of the interpolated sites allowed quantifying the directional differences in correlations at the same distance. The correlation distances d0 of R, k_Ka, and k_Ku were approximately 10 km and were not sensitive to the choice of four rain thresholds used in this study. The d0 of Z_Ku, on the other hand, ranged from 29 to 20 km between different rain thresholds. The coefficient of variation (CV) remained less than 0.5 for most of the samples for a given physical parameter, but a CV of greater than 1.0 was also observed in noticeable samples, especially for the shape parameter and Z_Ku.
2017
A Field Study of Footprint-Scale Variability of Raindrop Size Distribution / Tokay, Ali; D’Adderio, Leo Pio; Porcù, Federico; Wolff, David B.; Petersen, Walter A.. - In: JOURNAL OF HYDROMETEOROLOGY. - ISSN 1525-755X. - STAMPA. - 18:(2017), pp. 3165-3179. [10.1175/JHM-D-17-0003.1]
Tokay, Ali; D’Adderio, Leo Pio; Porcù, Federico; Wolff, David B.; Petersen, Walter A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/615466
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 21
social impact