We demonstrate the new specific phenomenon of the long-time resonant energy exchange in the carbon nanotubes (CNTs) in the two optical branches - the Circumferential Flexure Mode (CFM) and Radial Btreathing Mode (RBM). It is shown that the modified nonlinear Schrödinger equation, obtained in the framework of nonlinear elastic thin shell theory, allows to describe the CNT nonlinear dynamics connected with considered frequency bands. Comparative analysis of the oscillations of the CFM and RBM branches shows the principal difference between nonlinearity effects. If the nonlinear resonant interaction of the low-frequency modes in the CFM branch leads to the energy capture in the some domain of the CNT, the same interaction in the RBM branch does not appear any tendency to the energy localization. The reason of such a distinction is the difference of the non-linear terms in the equations of motion. If the CFMs are specified by the soft power nonlinearity, the RBM dynamics is determined by the hard gradient nonlinearity. Moreover, in contrast to CFM the importance of nonlinearity in the case of RBM oscillations decreases with increasing of the length to radius ratio. The numerical integration of the thin shell theory equations confirms the results of the analytical study.

Nonlinear optical vibrations of single-walled carbon nanotubes

Strozzi, M.
Membro del Collaboration Group
;
2017

Abstract

We demonstrate the new specific phenomenon of the long-time resonant energy exchange in the carbon nanotubes (CNTs) in the two optical branches - the Circumferential Flexure Mode (CFM) and Radial Btreathing Mode (RBM). It is shown that the modified nonlinear Schrödinger equation, obtained in the framework of nonlinear elastic thin shell theory, allows to describe the CNT nonlinear dynamics connected with considered frequency bands. Comparative analysis of the oscillations of the CFM and RBM branches shows the principal difference between nonlinearity effects. If the nonlinear resonant interaction of the low-frequency modes in the CFM branch leads to the energy capture in the some domain of the CNT, the same interaction in the RBM branch does not appear any tendency to the energy localization. The reason of such a distinction is the difference of the non-linear terms in the equations of motion. If the CFMs are specified by the soft power nonlinearity, the RBM dynamics is determined by the hard gradient nonlinearity. Moreover, in contrast to CFM the importance of nonlinearity in the case of RBM oscillations decreases with increasing of the length to radius ratio. The numerical integration of the thin shell theory equations confirms the results of the analytical study.
2017
Manevitch, L. I.; Smirnov, V. V.; Strozzi, Matteo; Pellicano, F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/610166
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 17
social impact