We have previously demonstrated that cells adapt to hypoxia using different metabolic reprogramming mechanisms depending on metabolism. We now investigate how the different adapting mechanisms affect reactive oxygen species (ROS) levels, and how ROS levels and cellular metabolism are linked. We show that when skin fibroblasts grew under short-term hypoxia (1% oxygen tension) ROS level markedly decreased (-50%) whatever substrate was available to the cells. Indeed, cellular ROS level linearly and directly decreased with oxygen tension. However, these relationships cannot explain the progressive ROS level decrease observed after prolonged cells hypoxia exposure. In glucose-enriched medium reduced mitochondrial mass and greater fragmentation are observed, both clear-cut indications of mitophagy suggesting that this is responsible for cellular ROS level decrease. Otherwise, in glucose-free medium exposure to prolonged hypoxia resulted in only minor mass reduction, but significantly enhanced expression of antioxidant enzymes. Interestingly, cellular ROS levels were lower in glucose-free compared to glucose-enriched medium under either normoxic or hypoxic conditions. Taken together, these findings reveal that in primary human fibroblasts hypoxia induces a decline in ROS and that different metabolism-dependent mechanisms contribute it, besides the major oxygen concentration decrease. In addition, the present data support the notion that metabolisms generating fewer ROS are associated with lower HIF-1α stabilization.

Hypoxia Decreases ROS level in human fibroblasts

SGARBI, GIANLUCA;GORINI, GIULIA;COSTANZINI, ANNA;BARBATO, SIMONA;SOLAINI, GIANCARLO;BARACCA, ALESSANDRA
2017

Abstract

We have previously demonstrated that cells adapt to hypoxia using different metabolic reprogramming mechanisms depending on metabolism. We now investigate how the different adapting mechanisms affect reactive oxygen species (ROS) levels, and how ROS levels and cellular metabolism are linked. We show that when skin fibroblasts grew under short-term hypoxia (1% oxygen tension) ROS level markedly decreased (-50%) whatever substrate was available to the cells. Indeed, cellular ROS level linearly and directly decreased with oxygen tension. However, these relationships cannot explain the progressive ROS level decrease observed after prolonged cells hypoxia exposure. In glucose-enriched medium reduced mitochondrial mass and greater fragmentation are observed, both clear-cut indications of mitophagy suggesting that this is responsible for cellular ROS level decrease. Otherwise, in glucose-free medium exposure to prolonged hypoxia resulted in only minor mass reduction, but significantly enhanced expression of antioxidant enzymes. Interestingly, cellular ROS levels were lower in glucose-free compared to glucose-enriched medium under either normoxic or hypoxic conditions. Taken together, these findings reveal that in primary human fibroblasts hypoxia induces a decline in ROS and that different metabolism-dependent mechanisms contribute it, besides the major oxygen concentration decrease. In addition, the present data support the notion that metabolisms generating fewer ROS are associated with lower HIF-1α stabilization.
2017
Sgarbi, G; Gorini, G; Costanzini, A; Barbato, S; Solaini, G; Baracca, A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/588007
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact