Hydrogen atoms play a key role in protein–ligand recognition. They determine the quality of established H-bonding networks and define the protonation of bound ligands. Structural visualization of H atoms by X-ray crystallography is rarely possible. We used neutron diffraction to determine the positions of the hydrogen atoms in the ligands aniline and 2-aminopyridine bound to the archetypical serine protease trypsin. The resulting structures show the best resolution so far achieved for proteins larger than 100 residues and allow an accurate description of the protonation states and interactions with nearby water molecules. Despite its low pKa of 4.6 and a large distance of 3.6 Å to the charged Asp189 at the bottom of the S1 pocket, the amino group of aniline becomes protonated, whereas in 2-aminopyridine, the pyridine nitrogen picks up the proton although its amino group is 1.6 Å closer to Asp189. Therefore, apart from charge–charge distances, tautomer stability is decisive for the resulting binding poses, an aspect that is pivotal for predicting correct binding.

Charges Shift Protonation: Neutron Diffraction Reveals that Aniline and 2-Aminopyridine Become Protonated Upon Binding to Trypsin / Schiebel, Johannes; Gaspari, Roberto; Sandner, Anna; Ngo, Khang; Gerber, Hans-Dieter; Cavalli, Andrea; Ostermann, Andreas; Heine, Andreas; Klebe, Gerhard. - In: ANGEWANDTE CHEMIE. INTERNATIONAL EDITION. - ISSN 1433-7851. - STAMPA. - 56:17(2017), pp. 4887-4890. [10.1002/anie.201701038]

Charges Shift Protonation: Neutron Diffraction Reveals that Aniline and 2-Aminopyridine Become Protonated Upon Binding to Trypsin

CAVALLI, ANDREA;
2017

Abstract

Hydrogen atoms play a key role in protein–ligand recognition. They determine the quality of established H-bonding networks and define the protonation of bound ligands. Structural visualization of H atoms by X-ray crystallography is rarely possible. We used neutron diffraction to determine the positions of the hydrogen atoms in the ligands aniline and 2-aminopyridine bound to the archetypical serine protease trypsin. The resulting structures show the best resolution so far achieved for proteins larger than 100 residues and allow an accurate description of the protonation states and interactions with nearby water molecules. Despite its low pKa of 4.6 and a large distance of 3.6 Å to the charged Asp189 at the bottom of the S1 pocket, the amino group of aniline becomes protonated, whereas in 2-aminopyridine, the pyridine nitrogen picks up the proton although its amino group is 1.6 Å closer to Asp189. Therefore, apart from charge–charge distances, tautomer stability is decisive for the resulting binding poses, an aspect that is pivotal for predicting correct binding.
2017
Charges Shift Protonation: Neutron Diffraction Reveals that Aniline and 2-Aminopyridine Become Protonated Upon Binding to Trypsin / Schiebel, Johannes; Gaspari, Roberto; Sandner, Anna; Ngo, Khang; Gerber, Hans-Dieter; Cavalli, Andrea; Ostermann, Andreas; Heine, Andreas; Klebe, Gerhard. - In: ANGEWANDTE CHEMIE. INTERNATIONAL EDITION. - ISSN 1433-7851. - STAMPA. - 56:17(2017), pp. 4887-4890. [10.1002/anie.201701038]
Schiebel, Johannes; Gaspari, Roberto; Sandner, Anna; Ngo, Khang; Gerber, Hans-Dieter; Cavalli, Andrea; Ostermann, Andreas; Heine, Andreas; Klebe, Gerhard
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/586998
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact