Pantothenate kinase-associated neurodegeneration (PKAN) is an early onset and severely disabling neurodegenerative disease for which no therapy is available. PKAN is caused by mutations in PANK2, which encodes for the mitochondrial enzyme pantothenate kinase 2. Its function is to catalyze the first limiting step of Coenzyme A (CoA) biosynthesis. We generated induced pluripotent stem cells from PKAN patients and showed that their derived neurons exhibited premature death, increased ROS production, mitochondrial dysfunctions—including impairment of mitochondrial iron-dependent biosynthesis—and major membrane excitability defects. CoA supplementation prevented neuronal death and ROS formation by restoring mitochondrial and neuronal functionality. Our findings provide direct evidence that PANK2 malfunctioning is responsible for abnormal phenotypes in human neuronal cells and indicate CoA treatment as a possible therapeutic intervention.

Coenzyme A corrects pathological defects in human neurons of PANK2-associated neurodegeneration / Orellana, Daniel I; Santambrogio, Paolo; Rubio, Alicia; Yekhlef, Latefa; Cancellieri, Cinzia; Dusi, Sabrina; Giannelli, Serena G; Venco, Paola; Mazzara, Pietro G; Cozzi, Anna; Ferrari, Maurizio; Garavaglia, Barbara; Taverna, Stefano; Tiranti, Valeria; Broccoli, Vania; Levi, Sonia. - In: EMBO MOLECULAR MEDICINE. - ISSN 1757-4676. - ELETTRONICO. - 8:10(2016), pp. 1197-1211. [10.15252/emmm.201606391]

Coenzyme A corrects pathological defects in human neurons of PANK2-associated neurodegeneration

DUSI, SABRINA;TIRANTI, VALERIA SONIA;
2016

Abstract

Pantothenate kinase-associated neurodegeneration (PKAN) is an early onset and severely disabling neurodegenerative disease for which no therapy is available. PKAN is caused by mutations in PANK2, which encodes for the mitochondrial enzyme pantothenate kinase 2. Its function is to catalyze the first limiting step of Coenzyme A (CoA) biosynthesis. We generated induced pluripotent stem cells from PKAN patients and showed that their derived neurons exhibited premature death, increased ROS production, mitochondrial dysfunctions—including impairment of mitochondrial iron-dependent biosynthesis—and major membrane excitability defects. CoA supplementation prevented neuronal death and ROS formation by restoring mitochondrial and neuronal functionality. Our findings provide direct evidence that PANK2 malfunctioning is responsible for abnormal phenotypes in human neuronal cells and indicate CoA treatment as a possible therapeutic intervention.
2016
Coenzyme A corrects pathological defects in human neurons of PANK2-associated neurodegeneration / Orellana, Daniel I; Santambrogio, Paolo; Rubio, Alicia; Yekhlef, Latefa; Cancellieri, Cinzia; Dusi, Sabrina; Giannelli, Serena G; Venco, Paola; Mazzara, Pietro G; Cozzi, Anna; Ferrari, Maurizio; Garavaglia, Barbara; Taverna, Stefano; Tiranti, Valeria; Broccoli, Vania; Levi, Sonia. - In: EMBO MOLECULAR MEDICINE. - ISSN 1757-4676. - ELETTRONICO. - 8:10(2016), pp. 1197-1211. [10.15252/emmm.201606391]
Orellana, Daniel I; Santambrogio, Paolo; Rubio, Alicia; Yekhlef, Latefa; Cancellieri, Cinzia; Dusi, Sabrina; Giannelli, Serena G; Venco, Paola; Mazzara, Pietro G; Cozzi, Anna; Ferrari, Maurizio; Garavaglia, Barbara; Taverna, Stefano; Tiranti, Valeria; Broccoli, Vania; Levi, Sonia
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/581267
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 41
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 63
social impact