Therapeutic hypothermia is today used in several clinical settings, among them the gut related diseases that are influenced by ischemia/reperfusion injury. This perspective paved the way to the study of hibernation physiology, in natural hibernators, highlighting an unexpected importance of the gut microbial ecosystem in hibernation and torpor. In natural hibernators, intestinal microbes adaptively reorganize their structural configuration during torpor, and maintain a mutualistic configuration regardless of long periods of fasting and cold temperatures. This allows the gut microbiome to provide the host with metabolites, which are essential to keep the host immunological and metabolic homeostasis during hibernation. The emerging role of the gut microbiota in the hibernation process suggests the importance of maintaining a mutualistic gut microbiota configuration in the application of therapeutic hypothermia as well as in the development of new strategy such as the use of synthetic torpor in humans. The possible utilization of tailored probiotics to mold the gut ecosystem during therapeutic hypothermia can also be taken into consideration as new therapeutic strategy.

Potential role of the gut microbiota in synthetic torpor and therapeutic hypothermia.

SISA, CLAUDIA;TURRONI, SILVIA;AMICI, ROBERTO;BRIGIDI, PATRIZIA;CANDELA, MARCO;CERRI, MATTEO
2017

Abstract

Therapeutic hypothermia is today used in several clinical settings, among them the gut related diseases that are influenced by ischemia/reperfusion injury. This perspective paved the way to the study of hibernation physiology, in natural hibernators, highlighting an unexpected importance of the gut microbial ecosystem in hibernation and torpor. In natural hibernators, intestinal microbes adaptively reorganize their structural configuration during torpor, and maintain a mutualistic configuration regardless of long periods of fasting and cold temperatures. This allows the gut microbiome to provide the host with metabolites, which are essential to keep the host immunological and metabolic homeostasis during hibernation. The emerging role of the gut microbiota in the hibernation process suggests the importance of maintaining a mutualistic gut microbiota configuration in the application of therapeutic hypothermia as well as in the development of new strategy such as the use of synthetic torpor in humans. The possible utilization of tailored probiotics to mold the gut ecosystem during therapeutic hypothermia can also be taken into consideration as new therapeutic strategy.
2017
Sisa, C; Turroni, S; Amici, R; Brigidi, P; Candela, M; Cerri, M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/581224
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact