ABSTRACT: PEDOT:PSS is a highly conductive material with good thermal and chemical stability and enhanced biocompatibility that make it suitable for bioengineering applications. The electrical control of the oxidation state of PEDOT:PSS films allows modulation of peculiar physical and chemical properties of the material, such as topography, wettability, and conductivity, and thus offers a possible route for controlling cellular behavior. Through the use of (i) the electrophysiological response of the plasma membrane as a biosensor of the ionic availability; (ii) relative abundance around the cells via Xray spectroscopy; and (iii) atomic force microscopy to monitor PEDOT:PSS film thickness relative to its oxidation state, we demonstrate that redox processes confer to PEDOT:PSS the property to modify the ionic environment at the film−liquid interface through a “sponge-like” effect on ions. Finally, we show how this property offers the capability to electrically control central cellular properties such as viability, substrate adhesion, and growth, paving the way for novel bioelectronics and biotechnological applications.

Electrically Controlled “Sponge Effect” of PEDOT:PSS Governs Membrane Potential and Cellular Growth

AMORINI, FABRIZIO;ZIRONI, ISABELLA;MARZOCCHI, MARCO;GUALANDI, ISACCO;CALIENNI, MARIA;CRAMER, TOBIAS;FRABONI, BEATRICE;CASTELLANI, GASTONE
2017

Abstract

ABSTRACT: PEDOT:PSS is a highly conductive material with good thermal and chemical stability and enhanced biocompatibility that make it suitable for bioengineering applications. The electrical control of the oxidation state of PEDOT:PSS films allows modulation of peculiar physical and chemical properties of the material, such as topography, wettability, and conductivity, and thus offers a possible route for controlling cellular behavior. Through the use of (i) the electrophysiological response of the plasma membrane as a biosensor of the ionic availability; (ii) relative abundance around the cells via Xray spectroscopy; and (iii) atomic force microscopy to monitor PEDOT:PSS film thickness relative to its oxidation state, we demonstrate that redox processes confer to PEDOT:PSS the property to modify the ionic environment at the film−liquid interface through a “sponge-like” effect on ions. Finally, we show how this property offers the capability to electrically control central cellular properties such as viability, substrate adhesion, and growth, paving the way for novel bioelectronics and biotechnological applications.
2017
Fabrizio Amorini; Isabella Zironi; Marco Marzocchi; Isacco Gualandi; Maria Calienni; Tobias Cramer; Beatrice Fraboni; Gastone Castellani
File in questo prodotto:
File Dimensione Formato  
Amorini et al. - primary manuscript 15-12-16.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/580016
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact