This article aims to determine the absolute accuracy of maxillary repositioning during orthognathic surgery according to simulation-guided navigation, that is, the combination of navigation and three-dimensional (3D) virtual surgery. We retrospectively studied 15 patients treated for asymmetric dentofacial deformities at the Oral and Maxillofacial Surgery Unit of the S.Orsola-Malpighi University Hospital in Bologna, Italy, from January 2010 to January 2012. Patients were scanned with a cone-beam computed tomography before and after surgery. The virtual surgical simulation was realized with a dedicated software and loaded on a navigation system to improve intraoperative reproducibility of the preoperative planning. We analyzed the outcome following two protocols: (1) planning versus postoperative 3D surface analysis; (2) planning versus postoperative point-based analysis. For 3D surface comparison, the mean Hausdorff distance was measured, and median among cases was 0.99 mm. Median reproducibility < 1 mm was 61.88% and median reproducibility < 2 mm was 85.46%. For the point-based analysis, with sign, the median distance was 0.75 mm in the frontal axis, -0.05 mm in the caudal-cranial axis, -0.35 mm in the lateral axis. In absolute value, the median distance was 1.19 mm in the frontal axis, 0.59 mm in the caudal-cranial axis, and 1.02 mm in the lateral axis. We suggest that simulation-guided navigation makes accurate postoperative outcomes possible for maxillary repositioning in orthognathic surgery, if compared with the surgical computer-designed project realized with a dedicated software, particularly for the vertical dimension, which is the most challenging to manage.

NAVIGATION IN ORTHOGNATHIC SURGERY:3D ACCURACY / Badiali, G.; Roncari, A.; Bianchi, A.; Taddei, F.; Marchetti, C.; Schileo, E.. - In: FACIAL PLASTIC SURGERY. - ISSN 0736-6825. - STAMPA. - 31:(2015), pp. 463-473. [10.1055/s-0035-1564716]

NAVIGATION IN ORTHOGNATHIC SURGERY:3D ACCURACY

BADIALI, GIOVANNI;BIANCHI, ALBERTO;TADDEI, FULVIA;MARCHETTI, CLAUDIO;
2015

Abstract

This article aims to determine the absolute accuracy of maxillary repositioning during orthognathic surgery according to simulation-guided navigation, that is, the combination of navigation and three-dimensional (3D) virtual surgery. We retrospectively studied 15 patients treated for asymmetric dentofacial deformities at the Oral and Maxillofacial Surgery Unit of the S.Orsola-Malpighi University Hospital in Bologna, Italy, from January 2010 to January 2012. Patients were scanned with a cone-beam computed tomography before and after surgery. The virtual surgical simulation was realized with a dedicated software and loaded on a navigation system to improve intraoperative reproducibility of the preoperative planning. We analyzed the outcome following two protocols: (1) planning versus postoperative 3D surface analysis; (2) planning versus postoperative point-based analysis. For 3D surface comparison, the mean Hausdorff distance was measured, and median among cases was 0.99 mm. Median reproducibility < 1 mm was 61.88% and median reproducibility < 2 mm was 85.46%. For the point-based analysis, with sign, the median distance was 0.75 mm in the frontal axis, -0.05 mm in the caudal-cranial axis, -0.35 mm in the lateral axis. In absolute value, the median distance was 1.19 mm in the frontal axis, 0.59 mm in the caudal-cranial axis, and 1.02 mm in the lateral axis. We suggest that simulation-guided navigation makes accurate postoperative outcomes possible for maxillary repositioning in orthognathic surgery, if compared with the surgical computer-designed project realized with a dedicated software, particularly for the vertical dimension, which is the most challenging to manage.
2015
NAVIGATION IN ORTHOGNATHIC SURGERY:3D ACCURACY / Badiali, G.; Roncari, A.; Bianchi, A.; Taddei, F.; Marchetti, C.; Schileo, E.. - In: FACIAL PLASTIC SURGERY. - ISSN 0736-6825. - STAMPA. - 31:(2015), pp. 463-473. [10.1055/s-0035-1564716]
Badiali, G.; Roncari, A.; Bianchi, A.; Taddei, F.; Marchetti, C.; Schileo, E.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/553684
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 30
social impact