Sensor radar networks enable important new applications based on accurate localization. They rely on the quality of range measurements, which serve as observations for inferring a target location. In harsh propagation environments (e.g., indoors), such observations can be nonrepresentative of the target due to noise, multipath, clutter, and non-line-of-sight conditions leading to target misdetection, false-alarm events, and inaccurate localization. These conditions can be mitigated by selecting and processing a subset of representative observations. We introduce blind techniques for the selection of representative observations gathered by sensor radars operating in harsh environments. A methodology for the design and analysis of sensor radar networks is developed, taking into account the aforementioned impairments and observation selection. Results are obtained for noncoherent ultra-wideband sensor radars in a typical indoor environment (with obstructions, multipath, and clutter) to enable a clear understanding of how observation selection improves the localization accuracy.
Titolo: | Blind Selection of Representative Observations for Sensor Radar Networks | |
Autore/i: | Bartoletti, S.; GIORGETTI, ANDREA; Win, M. Z.; Conti, A. | |
Autore/i Unibo: | ||
Anno: | 2015 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1109/TVT.2015.2397312 | |
Abstract: | Sensor radar networks enable important new applications based on accurate localization. They rely on the quality of range measurements, which serve as observations for inferring a target location. In harsh propagation environments (e.g., indoors), such observations can be nonrepresentative of the target due to noise, multipath, clutter, and non-line-of-sight conditions leading to target misdetection, false-alarm events, and inaccurate localization. These conditions can be mitigated by selecting and processing a subset of representative observations. We introduce blind techniques for the selection of representative observations gathered by sensor radars operating in harsh environments. A methodology for the design and analysis of sensor radar networks is developed, taking into account the aforementioned impairments and observation selection. Results are obtained for noncoherent ultra-wideband sensor radars in a typical indoor environment (with obstructions, multipath, and clutter) to enable a clear understanding of how observation selection improves the localization accuracy. | |
Data stato definitivo: | 2016-07-05T15:21:28Z | |
Appare nelle tipologie: |