The increasing penetration of low-carbon technologies and enhancements in fossil-fuelled power plants efficiency are some of the most important and up to date research topics. Renewable energy, in particular solar, has the potential of meeting the world energy needs while addressing environmental concerns, but technological advances in renewable energy electricity production are necessary to become competitive with conventional technologies. New opportunities to increase the penetration of renewables energies, smoothing out renewables variability and intermittency problems, come out from the hybridization concept. Hybrid renewable-fossil fuel systems join the advantages of both renewable energies and programmable devices. Among all the renewable technologies available for hybridization, Concentrating Solar Power (CSP) with parabolic trough is the most diffused because of its relatively conventional technology and ease of scale-up. CSP hybrids are well established worldwide, predominantly with natural gas: the hybridization options for CSP ranging from feed water heating, reheat steam, live steam to steam superheating. Based on a detailed thermodynamic cycle model of a reference small-size one pressure level Combined Cycle (CC) plant, the impact of CSP addition is thoroughly evaluated. Different hybrid schemes are evaluated and compared considering CC off-design operation. The goal of this study is to evaluate, from a thermodynamic point of view, three repowering options of a small-size CC with a CSP system in a hybrid system configuration and to quantify their potential benefits in terms of system's performance increase. In particular, the optimal size of CSP plant is shown for each investigated hybrid repowering options. The changes in CC steam cycle operating parameters are presented together with CC performance increase. It is shown that solar hybridization into an existing CC plant may give rise to a substantial benefit from a thermodynamic point of view.

Thermodynamic evaluation of repowering options for a small-size combined cycle with Concentrating Solar Power technology

ANCONA, MARIA ALESSANDRA;BIANCHI, MICHELE;BRANCHINI, LISA;DE PASCALE, ANDREA;MELINO, FRANCESCO;PERETTO, ANTONIO
2015

Abstract

The increasing penetration of low-carbon technologies and enhancements in fossil-fuelled power plants efficiency are some of the most important and up to date research topics. Renewable energy, in particular solar, has the potential of meeting the world energy needs while addressing environmental concerns, but technological advances in renewable energy electricity production are necessary to become competitive with conventional technologies. New opportunities to increase the penetration of renewables energies, smoothing out renewables variability and intermittency problems, come out from the hybridization concept. Hybrid renewable-fossil fuel systems join the advantages of both renewable energies and programmable devices. Among all the renewable technologies available for hybridization, Concentrating Solar Power (CSP) with parabolic trough is the most diffused because of its relatively conventional technology and ease of scale-up. CSP hybrids are well established worldwide, predominantly with natural gas: the hybridization options for CSP ranging from feed water heating, reheat steam, live steam to steam superheating. Based on a detailed thermodynamic cycle model of a reference small-size one pressure level Combined Cycle (CC) plant, the impact of CSP addition is thoroughly evaluated. Different hybrid schemes are evaluated and compared considering CC off-design operation. The goal of this study is to evaluate, from a thermodynamic point of view, three repowering options of a small-size CC with a CSP system in a hybrid system configuration and to quantify their potential benefits in terms of system's performance increase. In particular, the optimal size of CSP plant is shown for each investigated hybrid repowering options. The changes in CC steam cycle operating parameters are presented together with CC performance increase. It is shown that solar hybridization into an existing CC plant may give rise to a substantial benefit from a thermodynamic point of view.
2015
Ancona, M.A.; Bianchi, M.; Branchini, L; De Pascale, A.; Melino, F.; Peretto, A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/543645
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact