Trans-plasma membrane electron transfer is achieved by b-type cytochromes of different families, and plays a fundamental role in diverse cellular processes involving two interacting redox couples that are physically separated by a phospholipid bilayer, such as iron uptake and redox signaling. Despite their importance, no direct recordings of trans-plasma membrane electron currents have been described in plants. In this work, we provide robust electrophysiological evidence of trans-plasma membrane electron flow mediated by a soybean (Glycine max) cytochrome b561 associated with a dopamine β-monooxygenase redox domain (CYBDOM), which localizes to the plasma membrane in transgenic Arabidopsis (Arabidopsis thaliana) plants and CYBDOM complementary RNA-injected Xenopus laevis oocytes. In oocytes, two-electrode voltage clamp experiments showed that CYBDOM-mediated currents were activated by extracellular electron acceptors in a concentration- and type-specific manner. Current amplitudes were voltage dependent, strongly potentiated in oocytes preinjected with ascorbate (the canonical electron donor for cytochrome b561), and abolished by mutating a highly conserved His residue (H292L) predicted to coordinate the cytoplasmic heme b group. We believe that this unique approach opens new perspectives in plant transmembrane electron transport and beyond.

Direct recording of trans-plasma membrane electron currents mediated by a member of the cytochrome b561 family of soybean / Picco, Cristiana; Scholz-Starke, Joachim; Festa, Margherita; Costa, Alex; Sparla, Francesca; Trost, Paolo; Carpaneto, Armando. - In: PLANT PHYSIOLOGY. - ISSN 0032-0889. - STAMPA. - 169:2(2015), pp. 986-995. [10.1104/pp.15.00642]

Direct recording of trans-plasma membrane electron currents mediated by a member of the cytochrome b561 family of soybean

SPARLA, FRANCESCA;TROST, PAOLO BERNARDO;
2015

Abstract

Trans-plasma membrane electron transfer is achieved by b-type cytochromes of different families, and plays a fundamental role in diverse cellular processes involving two interacting redox couples that are physically separated by a phospholipid bilayer, such as iron uptake and redox signaling. Despite their importance, no direct recordings of trans-plasma membrane electron currents have been described in plants. In this work, we provide robust electrophysiological evidence of trans-plasma membrane electron flow mediated by a soybean (Glycine max) cytochrome b561 associated with a dopamine β-monooxygenase redox domain (CYBDOM), which localizes to the plasma membrane in transgenic Arabidopsis (Arabidopsis thaliana) plants and CYBDOM complementary RNA-injected Xenopus laevis oocytes. In oocytes, two-electrode voltage clamp experiments showed that CYBDOM-mediated currents were activated by extracellular electron acceptors in a concentration- and type-specific manner. Current amplitudes were voltage dependent, strongly potentiated in oocytes preinjected with ascorbate (the canonical electron donor for cytochrome b561), and abolished by mutating a highly conserved His residue (H292L) predicted to coordinate the cytoplasmic heme b group. We believe that this unique approach opens new perspectives in plant transmembrane electron transport and beyond.
2015
Direct recording of trans-plasma membrane electron currents mediated by a member of the cytochrome b561 family of soybean / Picco, Cristiana; Scholz-Starke, Joachim; Festa, Margherita; Costa, Alex; Sparla, Francesca; Trost, Paolo; Carpaneto, Armando. - In: PLANT PHYSIOLOGY. - ISSN 0032-0889. - STAMPA. - 169:2(2015), pp. 986-995. [10.1104/pp.15.00642]
Picco, Cristiana; Scholz-Starke, Joachim; Festa, Margherita; Costa, Alex; Sparla, Francesca; Trost, Paolo; Carpaneto, Armando
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/524802
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact