Ocean acidification is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic benefits these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO2 vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 micrometers) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton’s structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean.

Gains and losses of coral skeletal porosity changes with ocean acidification acclimation

FANTAZZINI, PAOLA
;
MENGOLI, STEFANO;PASQUINI, LUCA;BORTOLOTTI, VILLIAM;BRIZI, LEONARDO;MARIANI, MANUEL;DI GIOSIA, MATTEO;FERMANI, SIMONA;CAPACCIONI, BRUNO;CAROSELLI, ERIK;PRADA, FIORELLA;ZACCANTI, FRANCESCO;FALINI, GIUSEPPE
;
GOFFREDO, STEFANO
2015

Abstract

Ocean acidification is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic benefits these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO2 vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 micrometers) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton’s structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean.
2015
Fantazzini Paola; Mengoli Stefano; Pasquini Luca; Bortolotti Villiam; Brizi Leonardo; Mariani Manuel; Di Giosia Matteo; Fermani Simona; Capaccioni Bruno; Caroselli Erik; Prada Fiorella; Zaccanti Francesco; Levy Oren; Dubinsky Zvy; Kaandorp Jaap A; Konglerd Pirom; Hammel Jörg U; Dauphin Yannicke; Cuif Jean-Pierre; Weaver James C; Fabricius Katharina E; Wagermaier Wolfgang; Fratzl Peter; Falini Giuseppe; Goffredo Stefano
File in questo prodotto:
File Dimensione Formato  
ncomms8785.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF Visualizza/Apri
ncomms8785-s1.pdf

accesso aperto

Descrizione: Supplementary Information
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/522691
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 76
social impact