Mathematical models were used to explore sodium (Na) current alterations. Markovian representations were chosen to describe the Na current behavior under pathological conditions, such as genetic defects (Long QT and Brugada syndromes) or acquired diseases (heart failure). These Na current formulations were subsequently introduced in an integrated model of the ventricular myocyte to investigate their effects on the ventricular action potential. This "in silico" approach is a powerful tool, providing new insights into arrhythmia susceptibility due to inherited and/or acquired Na channelopathies.

Computer Simulation of Altered Sodium Channel Gating in Rabbit and HumanVentricular Myocytes

GRANDI, ELEONORA;SEVERI, STEFANO;
2007

Abstract

Mathematical models were used to explore sodium (Na) current alterations. Markovian representations were chosen to describe the Na current behavior under pathological conditions, such as genetic defects (Long QT and Brugada syndromes) or acquired diseases (heart failure). These Na current formulations were subsequently introduced in an integrated model of the ventricular myocyte to investigate their effects on the ventricular action potential. This "in silico" approach is a powerful tool, providing new insights into arrhythmia susceptibility due to inherited and/or acquired Na channelopathies.
2007
Functional Imaging and Modeling of the Heart, 4th International Conference, FIMH 2007
120
128
Grandi E.; Puglisi J.L.; Severi S.; Bers D.M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/48655
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact