Aims: This study was undertaken to evaluate the oxalate-degrading activity in several Lactobacillus species widely used in probiotic dairy and pharmaceutical preparations. Functional characterization of oxalyl-CoA decarboxylase and formyl-CoA transferase in Lactobacillus acidophilus was performed in order to assess the possible contribution of Lactobacillus in regulating the intestinal oxalate homeostasis. Methods and Results: In order to determine the oxalate-degrading ability in 60 Lactobacillus strains belonging to 12 species, a screening was carried out by using an enzymatic assay. A high variability in the oxalate-degrading capacity was found in the different species. Strains of Lact. acidophilus and Lactobacillus gasseri showed the highest oxalate-degrading activity. Oxalyl-CoA decarboxylase and formyl-CoA transferase genes from Lact. acidophilus LA14 were cloned and sequenced. The activity of the recombinant enzymes was assessed by capillary electrophoresis. Conclusions: Strains of Lactobacillus with a high oxalate-degrading activity were identified. The function and significance of Lact. acidophilus LA14 oxalyl-CoA decarboxylase and formyl-CoA transferase in oxalate catabolism were demonstrated. These results suggest the potential use of Lactobacillus strains for the degradation of oxalate in the human gut. Significance and Impact of the Study: Identification of probiotic strains with oxalate-degrading activity can offer the opportunity to provide this capacity to individuals suffering from an increased body burden of oxalate and oxalate-associated disorders. © 2007 The Authors.

Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA tranferase activity In Lactobacillus acidophilus

TURRONI, SILVIA;VITALI, BEATRICE;BENDAZZOLI, CLAUDIA;CANDELA, MARCO;GOTTI, ROBERTO;FEDERICI, FEDERICA;BRIGIDI, PATRIZIA
2007

Abstract

Aims: This study was undertaken to evaluate the oxalate-degrading activity in several Lactobacillus species widely used in probiotic dairy and pharmaceutical preparations. Functional characterization of oxalyl-CoA decarboxylase and formyl-CoA transferase in Lactobacillus acidophilus was performed in order to assess the possible contribution of Lactobacillus in regulating the intestinal oxalate homeostasis. Methods and Results: In order to determine the oxalate-degrading ability in 60 Lactobacillus strains belonging to 12 species, a screening was carried out by using an enzymatic assay. A high variability in the oxalate-degrading capacity was found in the different species. Strains of Lact. acidophilus and Lactobacillus gasseri showed the highest oxalate-degrading activity. Oxalyl-CoA decarboxylase and formyl-CoA transferase genes from Lact. acidophilus LA14 were cloned and sequenced. The activity of the recombinant enzymes was assessed by capillary electrophoresis. Conclusions: Strains of Lactobacillus with a high oxalate-degrading activity were identified. The function and significance of Lact. acidophilus LA14 oxalyl-CoA decarboxylase and formyl-CoA transferase in oxalate catabolism were demonstrated. These results suggest the potential use of Lactobacillus strains for the degradation of oxalate in the human gut. Significance and Impact of the Study: Identification of probiotic strains with oxalate-degrading activity can offer the opportunity to provide this capacity to individuals suffering from an increased body burden of oxalate and oxalate-associated disorders. © 2007 The Authors.
2007
Turroni S. ; Vitali B. ; Bendazzoli C. ; Candela M. ; Gotti R. ; Federici F. ; Pirovano F. ; Brigidi P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/48160
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 74
social impact