The rising attention to energy consumption problems is renewing interest in the applications of thermal remote sensing in urban areas. The research presented here aims to test a methodology to retrieve information about roof surface temperature by means of a high resolution orthomosaic of airborne thermal infrared images, based on a case study acquired over Bologna (Italy). The ultimate aim of such work is obtaining datasets useful to support, in a GIS environment, the decision makers in developing adequate strategies to reduce energy consumption and CO2 emission. In the processing proposed, the computing of radiometric quantities related to the atmosphere was performed by the Modtran 5 radiative transfer code, while an object-oriented supervised classification was applied on a WorldView-2 multispectral image, together with a high-resolution digital surface model (DSM), to distinguish among the major roofing material types and to model the effects of the emissivity. The emissivity values were derived from literature data, except for some roofing materials, which were measured during ad hoc surveys, by means of a thermal camera and a contact probe. These preliminary results demonstrate the high sensitivity of the model to the variability of the surface emissivity and of the atmospheric parameters, especially transmittance and upwelling radiance.

Aerial Thermography for Energetic Modelling of Cities

BITELLI, GABRIELE
;
CONTE, PAOLO;FRANCI, FRANCESCA;GIRELLI, VALENTINA ALENA;MANDANICI, EMANUELE
2015

Abstract

The rising attention to energy consumption problems is renewing interest in the applications of thermal remote sensing in urban areas. The research presented here aims to test a methodology to retrieve information about roof surface temperature by means of a high resolution orthomosaic of airborne thermal infrared images, based on a case study acquired over Bologna (Italy). The ultimate aim of such work is obtaining datasets useful to support, in a GIS environment, the decision makers in developing adequate strategies to reduce energy consumption and CO2 emission. In the processing proposed, the computing of radiometric quantities related to the atmosphere was performed by the Modtran 5 radiative transfer code, while an object-oriented supervised classification was applied on a WorldView-2 multispectral image, together with a high-resolution digital surface model (DSM), to distinguish among the major roofing material types and to model the effects of the emissivity. The emissivity values were derived from literature data, except for some roofing materials, which were measured during ad hoc surveys, by means of a thermal camera and a contact probe. These preliminary results demonstrate the high sensitivity of the model to the variability of the surface emissivity and of the atmospheric parameters, especially transmittance and upwelling radiance.
Gabriele Bitelli; Paolo Conte; Tamas Csoknyai; Francesca Franci; Valentina Girelli; Emanuele Mandanici
File in questo prodotto:
File Dimensione Formato  
remotesensing-07-02152_r.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/428566
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 19
social impact