Collagen electrospun scaffolds well reproduce the structure of the extracellular matrix (ECM) of natural tissues by coupling high biomimetism of the biological material with the fibrous morphology of the protein. Structural properties of collagen electrospun fibers are still a debated subject and there are conflicting reports in the literature addressing the presence of ultrastructure of collagen in electrospun fibers. In this work collagen type I was successfully electrospun from two different solvents, trifluoroethanol (TFE) and dilute acetic acid (AcOH). Characterization of collagen fibers was performed by means of SEM, ATR-IR, Circular Dichroism and WAXD. We demonstrated that collagen fibers contained a very low amount of triple helix with respect to pristine collagen (18 and 16 % in fibers electrospun from AcOH and TFE, respectively) and that triple helix denaturation occurred during polymer dissolution. Collagen scaffolds were crosslinked by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a commonly employed crosslinker for electrospun collagen, and 1,4-butanediol diglycidyl ether (BDDGE), that was tested for the first time in this work as crosslinking agent for collagen in the form of electrospun fibers. We demonstrated that BDDGE successfully crosslinked collagen and preserved at the same time the scaffold fibrous morphology, while scaffolds crosslinked with EDC completely lost their porous structure. Mesenchymal stem cell experiments demonstrated that collagen scaffolds crosslinked with BDDGE are biocompatible and support cell attachment.

Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers / Andrea Fiorani; Chiara Gualandi; Silvia Panseri; Monica Montesi; Maurilio Marcacci; Maria Letizia Focarete; Adriana Bigi. - In: JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE. - ISSN 0957-4530. - ELETTRONICO. - 25:(2014), pp. 2313-2321. [10.1007/s10856-014-5196-2]

Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers

FIORANI, ANDREA;GUALANDI, CHIARA;MARCACCI, MAURILIO;FOCARETE, MARIA LETIZIA;BIGI, ADRIANA
2014

Abstract

Collagen electrospun scaffolds well reproduce the structure of the extracellular matrix (ECM) of natural tissues by coupling high biomimetism of the biological material with the fibrous morphology of the protein. Structural properties of collagen electrospun fibers are still a debated subject and there are conflicting reports in the literature addressing the presence of ultrastructure of collagen in electrospun fibers. In this work collagen type I was successfully electrospun from two different solvents, trifluoroethanol (TFE) and dilute acetic acid (AcOH). Characterization of collagen fibers was performed by means of SEM, ATR-IR, Circular Dichroism and WAXD. We demonstrated that collagen fibers contained a very low amount of triple helix with respect to pristine collagen (18 and 16 % in fibers electrospun from AcOH and TFE, respectively) and that triple helix denaturation occurred during polymer dissolution. Collagen scaffolds were crosslinked by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a commonly employed crosslinker for electrospun collagen, and 1,4-butanediol diglycidyl ether (BDDGE), that was tested for the first time in this work as crosslinking agent for collagen in the form of electrospun fibers. We demonstrated that BDDGE successfully crosslinked collagen and preserved at the same time the scaffold fibrous morphology, while scaffolds crosslinked with EDC completely lost their porous structure. Mesenchymal stem cell experiments demonstrated that collagen scaffolds crosslinked with BDDGE are biocompatible and support cell attachment.
2014
Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers / Andrea Fiorani; Chiara Gualandi; Silvia Panseri; Monica Montesi; Maurilio Marcacci; Maria Letizia Focarete; Adriana Bigi. - In: JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE. - ISSN 0957-4530. - ELETTRONICO. - 25:(2014), pp. 2313-2321. [10.1007/s10856-014-5196-2]
Andrea Fiorani; Chiara Gualandi; Silvia Panseri; Monica Montesi; Maurilio Marcacci; Maria Letizia Focarete; Adriana Bigi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/396494
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 59
social impact