In the last four decades, Campi Flegrei caldera has been the world's most active caldera characterized by intense unrest episodes involving huge ground deformation and seismicity, but, at the time of writing, has not culminated in an eruption. We present a careful review, with new analyses and interpretation, of all the data and recent research results. We deal with three main problems: the tentative reconstruction of the substructure; the modelling of unrest episodes to shed light on possible pre-eruptive scenarios; and the probabilistic estimation of the hazards from explosive pyroclastic products. The results show, for the first time at a volcano, that a very peculiar mechanism is generating episodes of unrest, involving mainly activation of the geothermal system from deeper magma reservoirs. The character and evolution of unrest episodes is strongly controlled by structural features, like the ring-fault system at the borders of the caldera collapse. The use of detailed volcanological, mathematical and statistical procedures also make it possible to obtain a detailed picture of eruptive hazards in the whole Neapolitan area. The complex behaviour of this caldera, involving interaction between magmatic and geothermal phenomena, sheds light on the dynamics of the most dangerous types of volcanoes in the world.

The Campi Flegrei caldera: unrest mechanisms and hazards.

BOSCHI, ENZO
2006

Abstract

In the last four decades, Campi Flegrei caldera has been the world's most active caldera characterized by intense unrest episodes involving huge ground deformation and seismicity, but, at the time of writing, has not culminated in an eruption. We present a careful review, with new analyses and interpretation, of all the data and recent research results. We deal with three main problems: the tentative reconstruction of the substructure; the modelling of unrest episodes to shed light on possible pre-eruptive scenarios; and the probabilistic estimation of the hazards from explosive pyroclastic products. The results show, for the first time at a volcano, that a very peculiar mechanism is generating episodes of unrest, involving mainly activation of the geothermal system from deeper magma reservoirs. The character and evolution of unrest episodes is strongly controlled by structural features, like the ring-fault system at the borders of the caldera collapse. The use of detailed volcanological, mathematical and statistical procedures also make it possible to obtain a detailed picture of eruptive hazards in the whole Neapolitan area. The complex behaviour of this caldera, involving interaction between magmatic and geothermal phenomena, sheds light on the dynamics of the most dangerous types of volcanoes in the world.
2006
De Natale G.; Troise C.; Pingue F.; Mastrolorenzo G.; Pappalardo L.; Battaglia M.; Boschi E.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/32494
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 109
  • ???jsp.display-item.citation.isi??? ND
social impact