A key factor in a successful sensor network deployment is finding a good balance between maximizing the number of measurements taken (to maintain a good sampling rate) and minimizing the overall energy consumption (to extend the network lifetime). In this work, we present a data-driven statistical model to optimize this tradeoff. Our approach takes advantage of the multivariate nature of the data collected by a heterogeneous sensor network to learn spatio-temporal patterns. These patterns enable us to employ an aggressive duty cycling policy on the individual sensor nodes, thereby reducing the overall energy consumption. Our experiments with the OMNeT++ network simulator using realistic wireless channel conditions, on data collected from two real-world sensor networks, show that we can sample just 20% of the data and can reconstruct the remaining 80% of the data with less than 9% mean error, outperforming similar techniques such is distributed compressive sampling. In addition, energy savings ranging up to 76%, depending on the sampling rate and the hardware configuration of the node.

Efficient energy management and data recovery in sensor networks using latent variables based tensor factorization

MILOSEVIC, BOJAN;FARELLA, ELISABETTA;BENINI, LUCA;
2013

Abstract

A key factor in a successful sensor network deployment is finding a good balance between maximizing the number of measurements taken (to maintain a good sampling rate) and minimizing the overall energy consumption (to extend the network lifetime). In this work, we present a data-driven statistical model to optimize this tradeoff. Our approach takes advantage of the multivariate nature of the data collected by a heterogeneous sensor network to learn spatio-temporal patterns. These patterns enable us to employ an aggressive duty cycling policy on the individual sensor nodes, thereby reducing the overall energy consumption. Our experiments with the OMNeT++ network simulator using realistic wireless channel conditions, on data collected from two real-world sensor networks, show that we can sample just 20% of the data and can reconstruct the remaining 80% of the data with less than 9% mean error, outperforming similar techniques such is distributed compressive sampling. In addition, energy savings ranging up to 76%, depending on the sampling rate and the hardware configuration of the node.
2013
Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems - MSWiM '13
247
254
Bojan Milosevic;Jinseok Yang;Nakul Verma;Sameer S. Tilak;Piero Zappi;Elisabetta Farella;Luca Benini;Tajana Simunic Rosing
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/307322
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact