Scleractinian coral skeletons are composed mainly of aragonite in which a small percentage of organic matrix (OM) molecules is entrapped. It is well known that in corals the mineral deposition occurs in a biological confined nucleation site, but it is still unclear to what extent the calcification is controlled by OM molecules. Hence, the shape, size and organization of skeletal crystals from the fiber level through the colony architecture, were also attributed to factors as diverse as nucleation site mineral supersaturation and environmental factors in the habitat. In this work the OMs were extracted from the skeleton of three colonial corals, Acropora digitifera, Lophelia pertusa and Montipora caliculata. A. digitifera has a higher calcification rate than the other two species. OM molecules were characterized and their CaCO3 mineralization activity was evaluated by experiments of overgrowth on coral skeletons and of precipitation from solutions containing OM soluble and insoluble fractions and magnesium ions. The precipitates were characterized by spectroscopic and microscopic techniques. The results showed that the OM molecules of the three coral share similar features, but differ from those associated with mollusk shells. However, A. digitifera OM shows peculiarities from those from L. pertusa and M. caliculata. The CaCO3 overgrowth and precipitation experiments confirm the singularity of A. digitifera OM molecules as mineralizers. Moreover, their comparison indicates that only specific molecules are involved in the polymorphism control and suggests that when the whole extracted materials are used the OM’s main effect is on the control of particles’ shape and morphology.

Control of aragonite deposition in colonial corals by intra-skeletal macromolecules / Falini G; Reggi M; Fermani S; Sparla F; Goffredo S; Dubinsky Z; Levi O; Dauphin Y; Cuif JP.. - In: JOURNAL OF STRUCTURAL BIOLOGY. - ISSN 1047-8477. - STAMPA. - 183:2(2013), pp. 226-238. [10.1016/j.jsb.2013.05.001]

Control of aragonite deposition in colonial corals by intra-skeletal macromolecules

FALINI, GIUSEPPE;REGGI, MICHELA;FERMANI, SIMONA;SPARLA, FRANCESCA;GOFFREDO, STEFANO;
2013

Abstract

Scleractinian coral skeletons are composed mainly of aragonite in which a small percentage of organic matrix (OM) molecules is entrapped. It is well known that in corals the mineral deposition occurs in a biological confined nucleation site, but it is still unclear to what extent the calcification is controlled by OM molecules. Hence, the shape, size and organization of skeletal crystals from the fiber level through the colony architecture, were also attributed to factors as diverse as nucleation site mineral supersaturation and environmental factors in the habitat. In this work the OMs were extracted from the skeleton of three colonial corals, Acropora digitifera, Lophelia pertusa and Montipora caliculata. A. digitifera has a higher calcification rate than the other two species. OM molecules were characterized and their CaCO3 mineralization activity was evaluated by experiments of overgrowth on coral skeletons and of precipitation from solutions containing OM soluble and insoluble fractions and magnesium ions. The precipitates were characterized by spectroscopic and microscopic techniques. The results showed that the OM molecules of the three coral share similar features, but differ from those associated with mollusk shells. However, A. digitifera OM shows peculiarities from those from L. pertusa and M. caliculata. The CaCO3 overgrowth and precipitation experiments confirm the singularity of A. digitifera OM molecules as mineralizers. Moreover, their comparison indicates that only specific molecules are involved in the polymorphism control and suggests that when the whole extracted materials are used the OM’s main effect is on the control of particles’ shape and morphology.
2013
Control of aragonite deposition in colonial corals by intra-skeletal macromolecules / Falini G; Reggi M; Fermani S; Sparla F; Goffredo S; Dubinsky Z; Levi O; Dauphin Y; Cuif JP.. - In: JOURNAL OF STRUCTURAL BIOLOGY. - ISSN 1047-8477. - STAMPA. - 183:2(2013), pp. 226-238. [10.1016/j.jsb.2013.05.001]
Falini G; Reggi M; Fermani S; Sparla F; Goffredo S; Dubinsky Z; Levi O; Dauphin Y; Cuif JP.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/304333
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 37
social impact