Neural substrate of nausea is poorly understood, contrasting the wealth of knowledge about the emetic reflex. One of the reasons for this knowledge deficit is limited number and face validity of animal models of nausea. Our aim was to search for new physiological correlates of nausea in rats. Specifically, we addressed the question whether provocative motion (40-min rotation at 0.5 Hz) affects sleep architecture, brain temperature, heart rate (HR) and arterial pressure. Six adult male Sprague-Dawley rats were instrumented for recordings of EEG, nuchal electromyographic, hypothalamic temperature and arterial pressure. Provocative motion had the following effects: (1) total abolition of REM sleep during rotation and its substantial reduction during the first hour post-rotation (from 20 ± 3 to 5 ± 1.5 %); (2) reduction in NREM sleep, both during rotation (from 57 ± 6 to 19 ± 5 %) and during the first hour post-rotation (from 56 ± 3 to 41 ± 9 %); (3) fall in the brain temperature (from 37.1 ± 0.1 to 36.0 ± 0.1 °C); and (4) reduction in HR (from 375 ± 6 to 327 ± 7 bpm); arterial pressure was not affected. Ondansetron, a 5-HT3 antagonist, had no major effect on all observed parameters during both baseline and provocative motion. We conclude that in rats, provocative motion causes prolonged arousing effects, however without evidence of sympathetic activation that usually accompanies heightened arousal. Motion-induced fall in the brain temperature complements and extends our previous observations in rats and suggests that similar to humans, provocative motion triggers coordinated thermoregulatory response, leading to hypothermia in this species.

Provocative motion causes fall in brain temperature and affects sleep in rats

DEL VECCHIO, FLAVIA;CERRI, MATTEO;LUPPI, MARCO;AMICI, ROBERTO
2014

Abstract

Neural substrate of nausea is poorly understood, contrasting the wealth of knowledge about the emetic reflex. One of the reasons for this knowledge deficit is limited number and face validity of animal models of nausea. Our aim was to search for new physiological correlates of nausea in rats. Specifically, we addressed the question whether provocative motion (40-min rotation at 0.5 Hz) affects sleep architecture, brain temperature, heart rate (HR) and arterial pressure. Six adult male Sprague-Dawley rats were instrumented for recordings of EEG, nuchal electromyographic, hypothalamic temperature and arterial pressure. Provocative motion had the following effects: (1) total abolition of REM sleep during rotation and its substantial reduction during the first hour post-rotation (from 20 ± 3 to 5 ± 1.5 %); (2) reduction in NREM sleep, both during rotation (from 57 ± 6 to 19 ± 5 %) and during the first hour post-rotation (from 56 ± 3 to 41 ± 9 %); (3) fall in the brain temperature (from 37.1 ± 0.1 to 36.0 ± 0.1 °C); and (4) reduction in HR (from 375 ± 6 to 327 ± 7 bpm); arterial pressure was not affected. Ondansetron, a 5-HT3 antagonist, had no major effect on all observed parameters during both baseline and provocative motion. We conclude that in rats, provocative motion causes prolonged arousing effects, however without evidence of sympathetic activation that usually accompanies heightened arousal. Motion-induced fall in the brain temperature complements and extends our previous observations in rats and suggests that similar to humans, provocative motion triggers coordinated thermoregulatory response, leading to hypothermia in this species.
2014
Del Vecchio Flavia; Nalivaiko Eugene; Cerri Matteo; Luppi Marco; Amici Roberto
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/261891
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact