The magnetothermal behavior of antiferromagnetic IrMn layers of different thickness (3, 6, 10 nm) has been studied by exploiting the exchange coupling with a ferromagnetic 5 nm-thick NiFe layer. A procedure has been devised for the measurement of the magnetization of the NiFe/IrMn bilayers as a function of temperature and time at different values of an external magnetic field, Hinv, antiparallel to the unidirectional exchange anisotropy. This analysis allows one to probe the effective distribution of anisotropy energy barriers of the antiferromagnetic phase, as sensed by the ferromagnetic layer. Two magnetic regimes have been distinguished. At temperature T < 100 K, the interfacial IrMn spins are frozen in a glassy state and are collectively involved in the exchange coupling with the NiFe spins. At T ~ 100 K the collective state breaks up; thus, above this temperature, only the interfacial IrMn spins which are tightly polarized by the IrMn nanograins, forming the bulk of the layer, are effectively involved in the exchange coupling mechanism. Due to that, for T > 100 K the exchange coupling is ruled by the anisotropy energy barriers of the bulk IrMn nanograins, namely by the layer thickness. The thermal evolution of the exchange field and of the coercivity in the three samples is coherently explained in the framework of this description of the dynamic magnetic behavior of the IrMn phase.

Detection of the dynamic magnetic behavior of the antiferromagnet in exchange-coupled NiFe/IrMn bilayers / F Spizzo;M Tamisari;E Bonfiglioli;L Del Bianco. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - STAMPA. - 25:(2013), pp. 386001-386001-7. [10.1088/0953-8984/25/38/386001]

Detection of the dynamic magnetic behavior of the antiferromagnet in exchange-coupled NiFe/IrMn bilayers

DEL BIANCO, LUCIA
2013

Abstract

The magnetothermal behavior of antiferromagnetic IrMn layers of different thickness (3, 6, 10 nm) has been studied by exploiting the exchange coupling with a ferromagnetic 5 nm-thick NiFe layer. A procedure has been devised for the measurement of the magnetization of the NiFe/IrMn bilayers as a function of temperature and time at different values of an external magnetic field, Hinv, antiparallel to the unidirectional exchange anisotropy. This analysis allows one to probe the effective distribution of anisotropy energy barriers of the antiferromagnetic phase, as sensed by the ferromagnetic layer. Two magnetic regimes have been distinguished. At temperature T < 100 K, the interfacial IrMn spins are frozen in a glassy state and are collectively involved in the exchange coupling with the NiFe spins. At T ~ 100 K the collective state breaks up; thus, above this temperature, only the interfacial IrMn spins which are tightly polarized by the IrMn nanograins, forming the bulk of the layer, are effectively involved in the exchange coupling mechanism. Due to that, for T > 100 K the exchange coupling is ruled by the anisotropy energy barriers of the bulk IrMn nanograins, namely by the layer thickness. The thermal evolution of the exchange field and of the coercivity in the three samples is coherently explained in the framework of this description of the dynamic magnetic behavior of the IrMn phase.
2013
Detection of the dynamic magnetic behavior of the antiferromagnet in exchange-coupled NiFe/IrMn bilayers / F Spizzo;M Tamisari;E Bonfiglioli;L Del Bianco. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - STAMPA. - 25:(2013), pp. 386001-386001-7. [10.1088/0953-8984/25/38/386001]
F Spizzo;M Tamisari;E Bonfiglioli;L Del Bianco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/182523
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact