In hierarchical models of structure formation, the time derivative of the halo mass function may be thought of as the difference of two terms - a creation term, which describes the increase in the number of haloes of mass m from mergers of less massive objects, and a destruction term, which describes the decrease in the number of m-haloes as these merge with other haloes, creating more massive haloes as a result. The first part of this paper focuses on estimating the distribution of times when these creation events take place. In models where haloes form from a spherical collapse, this distribution can be estimated from the same formalism which is used to estimate halo abundances: the constant-barrier excursion-set approach. In the excursion-set approach, moving rather than constant barriers are necessary for estimating halo abundances when the collapse is triaxial. First, we generalize the excursion-set estimate of the creation time distribution by incorporating ellipsoidal collapse. Then, we show that these moving barrier based predictions are in better agreement with measurements in numerical simulations than are the corresponding predictions of the spherical collapse model. In the second part of the paper, we link the creation time distribution to the creation term mentioned above. For this quantity, the improvement provided by the ellipsoidal collapse model is more evident. These results should be useful for studies of merger-driven star formation rates and active galactic nucleus activity. We also present a similar study of the creation of haloes conditioned on belonging to an object of a certain mass today, and reach similar conclusions - the moving barrier based estimates are in substantially better agreement with the simulations. This part of the study may be useful for understanding the tendency for the oldest stars to exist in the most massive objects, and for star formation to only occur in lower mass objects at late times.

Dark matter halo creation in moving barrier models / Jorge Moreno;Carlo Giocoli;Ravi K. Sheth. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - STAMPA. - 397:(2009), pp. 299-310. [10.1111/j.1365-2966.2009.14871.x]

Dark matter halo creation in moving barrier models

GIOCOLI, CARLO;
2009

Abstract

In hierarchical models of structure formation, the time derivative of the halo mass function may be thought of as the difference of two terms - a creation term, which describes the increase in the number of haloes of mass m from mergers of less massive objects, and a destruction term, which describes the decrease in the number of m-haloes as these merge with other haloes, creating more massive haloes as a result. The first part of this paper focuses on estimating the distribution of times when these creation events take place. In models where haloes form from a spherical collapse, this distribution can be estimated from the same formalism which is used to estimate halo abundances: the constant-barrier excursion-set approach. In the excursion-set approach, moving rather than constant barriers are necessary for estimating halo abundances when the collapse is triaxial. First, we generalize the excursion-set estimate of the creation time distribution by incorporating ellipsoidal collapse. Then, we show that these moving barrier based predictions are in better agreement with measurements in numerical simulations than are the corresponding predictions of the spherical collapse model. In the second part of the paper, we link the creation time distribution to the creation term mentioned above. For this quantity, the improvement provided by the ellipsoidal collapse model is more evident. These results should be useful for studies of merger-driven star formation rates and active galactic nucleus activity. We also present a similar study of the creation of haloes conditioned on belonging to an object of a certain mass today, and reach similar conclusions - the moving barrier based estimates are in substantially better agreement with the simulations. This part of the study may be useful for understanding the tendency for the oldest stars to exist in the most massive objects, and for star formation to only occur in lower mass objects at late times.
2009
Dark matter halo creation in moving barrier models / Jorge Moreno;Carlo Giocoli;Ravi K. Sheth. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - STAMPA. - 397:(2009), pp. 299-310. [10.1111/j.1365-2966.2009.14871.x]
Jorge Moreno;Carlo Giocoli;Ravi K. Sheth
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/143326
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact