The basic idea behind LBP is that an image is composed of micropatterns. A histogram of these micropatterns contains information about the local features in an image. These micropatterns can be divided into two types: uniform and non-uniform. In standard applications using LBP, only the uniform patterns are used. The non-uniform patterns are considered in only a single bin of the histogram that is used to extract features in the classification stage. Non-uniform patterns have undesirable characteristics: they are of a high dimension, partially correlated, and introduce unwanted noise. To offset these disadvantages, we explore using random subspace, well-known to work well with noise and correlated features, to train features based also on non-uniform patterns. We find that a stand-alone support vector machine performs best with the uniform patterns and random subspace with histograms of 50 bins performs best with the non-uniform patterns. Superior results are obtained when the two are combined. Based on extensive experiments conducted in several domains using several benchmark databases, it is our conclusion that non-uniform patterns improve classifier performance.

A simple method for improving local binary patterns by considering non-uniform patterns / L. Nanni; S. Brahnam; A. Lumini. - In: PATTERN RECOGNITION. - ISSN 0031-3203. - STAMPA. - 45:10(2012), pp. 3844-3852. [10.1016/j.patcog.2012.04.007]

A simple method for improving local binary patterns by considering non-uniform patterns

LUMINI, ALESSANDRA
2012

Abstract

The basic idea behind LBP is that an image is composed of micropatterns. A histogram of these micropatterns contains information about the local features in an image. These micropatterns can be divided into two types: uniform and non-uniform. In standard applications using LBP, only the uniform patterns are used. The non-uniform patterns are considered in only a single bin of the histogram that is used to extract features in the classification stage. Non-uniform patterns have undesirable characteristics: they are of a high dimension, partially correlated, and introduce unwanted noise. To offset these disadvantages, we explore using random subspace, well-known to work well with noise and correlated features, to train features based also on non-uniform patterns. We find that a stand-alone support vector machine performs best with the uniform patterns and random subspace with histograms of 50 bins performs best with the non-uniform patterns. Superior results are obtained when the two are combined. Based on extensive experiments conducted in several domains using several benchmark databases, it is our conclusion that non-uniform patterns improve classifier performance.
2012
A simple method for improving local binary patterns by considering non-uniform patterns / L. Nanni; S. Brahnam; A. Lumini. - In: PATTERN RECOGNITION. - ISSN 0031-3203. - STAMPA. - 45:10(2012), pp. 3844-3852. [10.1016/j.patcog.2012.04.007]
L. Nanni; S. Brahnam; A. Lumini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/117954
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 49
social impact