Purpose: Rhabdomyosarcomas are a major cause of cancer death in children, described with MYCN amplification and, in the alveolar subtype, transcription driven by the PAX3-FOXO1 fusion protein. Our aim was to determine the prevalence of N-Myc protein expression and the potential therapeutic effects of reducing expression in rhabdomyosarcomas, including use of an antigene strategy that inhibits transcription. Experimental Design: Protein expression was assessed by immunohistochemistry. MYCN expression was reduced in representative cell lines by RNA interference and an antigene peptide nucleic acid (PNA) oligonucleotide conjugated to a nuclear localization signal peptide. Associated gene expression changes, cell viability, and apoptosis were analyzed in vitro. As a paradigm for antigene therapy, the effects of systemic treatment of mice with rhabdomyosarcoma cell line xenografts were determined. Results: High N-Myc levels were significantly associated with genomic amplification, presence of the PAX3/7-FOXO1 fusion genes, and proliferative capacity. Sustained reduction of N-Myc levels in all rhabdomyosarcoma cell lines that express the protein decreased cell proliferation and increased apoptosis. Positive feedback was shown to regulate PAX3-FOXO1 and N-Myc levels in the alveolar subtype that critically decrease PAX3-FOXO1 levels on reducing N-Myc. Pharmacologic systemic administration of the antigene PNA can eliminate alveolar rhabdomyosarcoma xenografts in mice, without relapse or toxicity. Conclusion: N-Myc, with its restricted expression in non-fetal tissues, is a therapeutic target to treat rhabdomyosarcomas, and blocking gene transcription using antigene oligonucleotide strategies has therapeutic potential in the treatment of cancer and other diseases that has not been previously realized in vivo. Translational Relevance Rhabdomyosarcomas are the most common pediatric soft tissue sarcoma. They are a leading cause of cancer death in children with few therapeutic options in highrisk categories. N-Myc is a transcription factor belonging to the MYC protein family that has a highly restricted expression pattern in non-fetal tissues. N-Myc protein expression in patient samples of rhabdomyosarcoma and an apoptotic response to sustained reduction of expression in rhabdomyosarcoma cell lines imply that N-Myc represents a tumor-specific therapeutic target in these tumors. Systemic treatment of mice with rhabdomyosarcoma cell line xenografts using an antigene peptide nucleic acid (PNA) oligonucleotide conjugated to a nuclear localization signal peptide that inhibits transcription of MYCN shows promise by eliminating tumors. This direct antigene approach may have therapeutic potential in the treatment of other cancers and diseases.

Antitumor Activity of Sustained N-Myc Reduction in Rhabdomyosarcomas and Transcriptional Block by Antigene Therapy

TONELLI, ROBERTO;CAMERIN, CONSUELO;PURGATO, STEFANIA;ASTOLFI, ANNALISA;FORMICA, SERENA;AMBROSINI, VALENTINA;HRELIA, PATRIZIA;CANTELLI FORTI, GIORGIO;FANTI, STEFANO;PESSION, ANDREA;
2012

Abstract

Purpose: Rhabdomyosarcomas are a major cause of cancer death in children, described with MYCN amplification and, in the alveolar subtype, transcription driven by the PAX3-FOXO1 fusion protein. Our aim was to determine the prevalence of N-Myc protein expression and the potential therapeutic effects of reducing expression in rhabdomyosarcomas, including use of an antigene strategy that inhibits transcription. Experimental Design: Protein expression was assessed by immunohistochemistry. MYCN expression was reduced in representative cell lines by RNA interference and an antigene peptide nucleic acid (PNA) oligonucleotide conjugated to a nuclear localization signal peptide. Associated gene expression changes, cell viability, and apoptosis were analyzed in vitro. As a paradigm for antigene therapy, the effects of systemic treatment of mice with rhabdomyosarcoma cell line xenografts were determined. Results: High N-Myc levels were significantly associated with genomic amplification, presence of the PAX3/7-FOXO1 fusion genes, and proliferative capacity. Sustained reduction of N-Myc levels in all rhabdomyosarcoma cell lines that express the protein decreased cell proliferation and increased apoptosis. Positive feedback was shown to regulate PAX3-FOXO1 and N-Myc levels in the alveolar subtype that critically decrease PAX3-FOXO1 levels on reducing N-Myc. Pharmacologic systemic administration of the antigene PNA can eliminate alveolar rhabdomyosarcoma xenografts in mice, without relapse or toxicity. Conclusion: N-Myc, with its restricted expression in non-fetal tissues, is a therapeutic target to treat rhabdomyosarcomas, and blocking gene transcription using antigene oligonucleotide strategies has therapeutic potential in the treatment of cancer and other diseases that has not been previously realized in vivo. Translational Relevance Rhabdomyosarcomas are the most common pediatric soft tissue sarcoma. They are a leading cause of cancer death in children with few therapeutic options in highrisk categories. N-Myc is a transcription factor belonging to the MYC protein family that has a highly restricted expression pattern in non-fetal tissues. N-Myc protein expression in patient samples of rhabdomyosarcoma and an apoptotic response to sustained reduction of expression in rhabdomyosarcoma cell lines imply that N-Myc represents a tumor-specific therapeutic target in these tumors. Systemic treatment of mice with rhabdomyosarcoma cell line xenografts using an antigene peptide nucleic acid (PNA) oligonucleotide conjugated to a nuclear localization signal peptide that inhibits transcription of MYCN shows promise by eliminating tumors. This direct antigene approach may have therapeutic potential in the treatment of other cancers and diseases.
2012
R. Tonelli; A. McIntyre; C. Camerin; Z.S. Walters; K. Di Leo; J. Selfe; S. Purgato; E. Missiaglia; A. Tortori; J. Renshaw; A. Astolfi; K.R. Taylor; S. Serravalle; R. Bishop; C. Nanni; L.J. Valentijn; A. Faccini; I. Leuschner; S. Formica; Jorge S Reis-Filho9; V. Ambrosini; K. Thway; M. Franzoni; B. Summersgill; R. Marchelli; P. Hrelia; G. Cantelli-Forti; S. Fanti; R. Corradini; A. Pession; J. Shipley
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/111572
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 40
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 65
social impact