The uncoupled Continuous Time Random Walk (CTRW) in one space-dimension and under power law regime is splitted into three distinct random walks: (rw1), a random walk along the line of natural time, happening in operational time; (w2), a random walk along the line of space, happening in operational time; (rw3), the inversion of (rw1), namely a random walk along the line of operational time, happening in natural time. Via the general integral equation of CTRW and appropriate rescaling, the transition to the diffusion limit is carried out for each of these three random walks. Combining the limits of (rw1) and (rw2) we get the method of parametric subordination for generating particle paths, whereas combination of (rw2) and (rw3) yields the subordination integral for the sojourn probability density in space-time fractional diffusion.

Subordination pathways to fractional diffusion

MAINARDI, FRANCESCO
2011

Abstract

The uncoupled Continuous Time Random Walk (CTRW) in one space-dimension and under power law regime is splitted into three distinct random walks: (rw1), a random walk along the line of natural time, happening in operational time; (w2), a random walk along the line of space, happening in operational time; (rw3), the inversion of (rw1), namely a random walk along the line of operational time, happening in natural time. Via the general integral equation of CTRW and appropriate rescaling, the transition to the diffusion limit is carried out for each of these three random walks. Combining the limits of (rw1) and (rw2) we get the method of parametric subordination for generating particle paths, whereas combination of (rw2) and (rw3) yields the subordination integral for the sojourn probability density in space-time fractional diffusion.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/107978
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact