Through silicon vias (TSVs) provide an efficient way to support vertical communication among different layers of a vertically stacked chip, enabling scalable 3-D networks-on-chip (NoC) architectures. Unfortunately, low TSV yields significantly impact the feasibility of high-bandwidth vertical connectivity. In this paper, we present a semi-automated design flow for 3-D NoCs including a defect-tolerance scheme to increase the global yield of 3-D stacked chips. Starting from an accurate physical and geometrical model of TSVs: 1) we extract a circuit-level model for vertical interconnections; 2) we use it to evaluate the design implications of extending switch architectures with ports in the vertical direction; moreover, 3) we present a defect-tolerance technique for TSV-based multi-bit links through an effective use of redundancy; and finally, 4) we present a design flow allowing for post-layout simulation of NoCs with links in all three physical dimensions. Experimental results show that a 3-D NoC implementation yields around 10% frequency improvement over a 2-D one, thanks to the propagation delay advantage of TSVs and the shorter links. In addition, the adopted fault tolerance scheme demonstrates a significant yield improvement, ranging from 66% to 98%, with a low area cost (20.9% on a vertical link in a NoC switch, which leads a modest 2.1% increase in the total switch area) in 130 nm technology, with minimal impact on very large-scale integrated design and test flows.

Characterization and Implementation of Fault-Tolerant Vertical Links for 3-D Networks-on-Chip / Loi I.; Angiolini F.; Fujita S.; Mitra S.; Benini L.. - In: IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. - ISSN 0278-0070. - STAMPA. - 30:1(2011), pp. 124-134. [10.1109/TCAD.2010.2065990]

Characterization and Implementation of Fault-Tolerant Vertical Links for 3-D Networks-on-Chip

LOI, IGOR;ANGIOLINI, FEDERICO;BENINI, LUCA
2011

Abstract

Through silicon vias (TSVs) provide an efficient way to support vertical communication among different layers of a vertically stacked chip, enabling scalable 3-D networks-on-chip (NoC) architectures. Unfortunately, low TSV yields significantly impact the feasibility of high-bandwidth vertical connectivity. In this paper, we present a semi-automated design flow for 3-D NoCs including a defect-tolerance scheme to increase the global yield of 3-D stacked chips. Starting from an accurate physical and geometrical model of TSVs: 1) we extract a circuit-level model for vertical interconnections; 2) we use it to evaluate the design implications of extending switch architectures with ports in the vertical direction; moreover, 3) we present a defect-tolerance technique for TSV-based multi-bit links through an effective use of redundancy; and finally, 4) we present a design flow allowing for post-layout simulation of NoCs with links in all three physical dimensions. Experimental results show that a 3-D NoC implementation yields around 10% frequency improvement over a 2-D one, thanks to the propagation delay advantage of TSVs and the shorter links. In addition, the adopted fault tolerance scheme demonstrates a significant yield improvement, ranging from 66% to 98%, with a low area cost (20.9% on a vertical link in a NoC switch, which leads a modest 2.1% increase in the total switch area) in 130 nm technology, with minimal impact on very large-scale integrated design and test flows.
2011
Characterization and Implementation of Fault-Tolerant Vertical Links for 3-D Networks-on-Chip / Loi I.; Angiolini F.; Fujita S.; Mitra S.; Benini L.. - In: IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. - ISSN 0278-0070. - STAMPA. - 30:1(2011), pp. 124-134. [10.1109/TCAD.2010.2065990]
Loi I.; Angiolini F.; Fujita S.; Mitra S.; Benini L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/105830
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 44
social impact