This study was performed to assess the impact of glutathione on the reaction between (+)-catechin and carbonyl compounds in wine-related conditions. (+)-Catechin (0.50 mM) and either glyoxylic acid (0.25 mM) or acetaldehyde (0.25 mM) were added to a model wine system with 0.0, 0.25, and 2.5mM of glutathione added. UPLC-DAD and LC-MS analysis showed that the formation of carbonyl-bridged (+)-catechin dimers was inhibited in the samples with a glutathione to carbonyl ratio of 10:1 compared to the samples without glutathione. At a ratio of 1:1, glutathione inhibited the acetaldehyde-bridged dimers but only had a minor impact on the glyoxylic acid-bridged dimers. Further investigations showed that this trend of inhibition by glutathione on the glyoxylic acid-derived dimer was independent of temperatures, 20 °C vs 45 °C, or the presence of metal ions, 0.2 mg/L copper(II) and 5 mg/L iron(II). 1H NMR analysis and LC-MS analysis provided evidence that glutathione inhibited dimer formation via different mechanisms depending on the carbonyl compound. For acetaldehyde-derived dimers, the main mode of inhibition was the ability of glutathione to form a (methyl-glutathionyl-methine)-(+)-catechin complex. Alternatively, the formation of a glutathioneglyoxylic acid addition product impeded the reaction between glyoxylic acid with (+)-catechin. These results demonstrate that glutathione, at sufficient concentration, can have a substantial impact on carbonyl-derived polymerization reactions in wine-like conditions

Impact of Glutathione on the Formation of Methylmethine- and Carboxymethine-Bridged (+)-Catechin Dimers in a Model Wine System / F. Sonni; E.G. Moore; A.C. Clark; F.Chinnici;C. Riponi; G.R. Scollary. - In: JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY. - ISSN 0021-8561. - ELETTRONICO. - 59:(2011), pp. 7410-7418. [10.1021/jf200968x]

Impact of Glutathione on the Formation of Methylmethine- and Carboxymethine-Bridged (+)-Catechin Dimers in a Model Wine System

SONNI, FRANCESCA;CHINNICI, FABIO;RIPONI, CLAUDIO;
2011

Abstract

This study was performed to assess the impact of glutathione on the reaction between (+)-catechin and carbonyl compounds in wine-related conditions. (+)-Catechin (0.50 mM) and either glyoxylic acid (0.25 mM) or acetaldehyde (0.25 mM) were added to a model wine system with 0.0, 0.25, and 2.5mM of glutathione added. UPLC-DAD and LC-MS analysis showed that the formation of carbonyl-bridged (+)-catechin dimers was inhibited in the samples with a glutathione to carbonyl ratio of 10:1 compared to the samples without glutathione. At a ratio of 1:1, glutathione inhibited the acetaldehyde-bridged dimers but only had a minor impact on the glyoxylic acid-bridged dimers. Further investigations showed that this trend of inhibition by glutathione on the glyoxylic acid-derived dimer was independent of temperatures, 20 °C vs 45 °C, or the presence of metal ions, 0.2 mg/L copper(II) and 5 mg/L iron(II). 1H NMR analysis and LC-MS analysis provided evidence that glutathione inhibited dimer formation via different mechanisms depending on the carbonyl compound. For acetaldehyde-derived dimers, the main mode of inhibition was the ability of glutathione to form a (methyl-glutathionyl-methine)-(+)-catechin complex. Alternatively, the formation of a glutathioneglyoxylic acid addition product impeded the reaction between glyoxylic acid with (+)-catechin. These results demonstrate that glutathione, at sufficient concentration, can have a substantial impact on carbonyl-derived polymerization reactions in wine-like conditions
2011
Impact of Glutathione on the Formation of Methylmethine- and Carboxymethine-Bridged (+)-Catechin Dimers in a Model Wine System / F. Sonni; E.G. Moore; A.C. Clark; F.Chinnici;C. Riponi; G.R. Scollary. - In: JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY. - ISSN 0021-8561. - ELETTRONICO. - 59:(2011), pp. 7410-7418. [10.1021/jf200968x]
F. Sonni; E.G. Moore; A.C. Clark; F.Chinnici;C. Riponi; G.R. Scollary
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/103751
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 49
social impact