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Abstract | Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by 15 

definition, are not translated into proteins. Since their discovery, ncRNAs have emerged 16 

as important regulators of multiple biological functions across a range of cell types and 17 

tissues, and their dysregulation has been implicated in disease. Notably, much research 18 

has focused on the link between microRNAs (miRNAs) and human cancers, although 19 

other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), 20 

are also emerging as relevant contributors to human disease. In this Review, we 21 

summarize our current understanding of the role of miRNAs, lncRNAs and circRNAs in 22 

cancer and other major human diseases, notably cardiovascular, neurological and 23 

infectious diseases. We further discuss the potential use of ncRNAs as biomarkers of 24 

disease and therapeutic targets.  25 

  26 
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In this review, the authors describe our current knowledge of the role of miRNAs, 28 

lncRNAs and circRNAs in disease, with a focus on cardiovascular, neurological, 29 

infectious diseases, and cancer. They further discuss the potential use of ncRNAs 30 

as disease biomarkers and as therapeutic targets. 31 

 32 

[H1] Introduction 33 

The majority of the human genome (76–97%) encodes for RNAs that are not translated 34 

into proteins, termed non-coding RNAs (ncRNAs)1-3. Since their discovery, the biological 35 

importance of ncRNAs has become increasingly apparent, shifting the perspective of 36 

RNA as a simple intermediary of protein synthesis towards RNA as a functional molecule 37 

with essential roles in the regulation of gene expression and genome organization. The 38 

functional relevance of one class of ncRNAs in particular, microRNAs (miRNAs), has 39 

received much attention, with important roles in a myriad of cellular processes, including 40 

muscle differentiation and cardiac development4,5, as well as neural stem cell 41 

differentiation and neurogenesis6,7. Compelling evidence further implicated dysregulated 42 

miRNAs in human diseases, particularly human cancers, such as by functioning as 43 

oncogenes and/or tumor suppressors8. miRNAs have also been found to be differentially 44 

expressed in a range of other human pathologies, including cardiovascular9,10, 45 

neurological6,7, and infectious diseases11. Most recently, their involvement in SARS-Cov-46 

2 infection was demonstrated12. 47 

Over the years, high-throughput sequencing and other technologies have led to 48 

the identification of a wide range of ncRNAs of different types and sizes4,5. These include 49 

ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs 50 

(snoRNAs), transfer RNAs (tRNAs) and more recently miRNAs, long ncRNAs (lncRNAs), 51 

circular RNAs (circRNAs), heterogeneous nuclear RNA (hnRNAs), PIWI-interacting 52 

RNAs (piRNAs).  53 

Long ncRNAs and circular RNAs are recognized as essential regulators in a variety 54 

of biological processes. Similar to miRNAs, dysregulation of lncRNAs and circRNAs has 55 
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been associated with various human diseases13-16. One of the biggest challenges in the 56 

field today is to elucidate the diverse functions and mechanisms of action of ncRNAs, 57 

which is essential for defining their clinical relevance and exploiting their potential use as 58 

biomarkers or therapeutic targets. 59 

Here, we review the role of ncRNAs in human diseases that account for the highest 60 

mortality worldwide, including cardiovascular diseases, cancer, neurodegenerative and 61 

infectious diseases, such as COVID-19. We place a focus on the disease-related ncRNAs 62 

that have received the most research focus: miRNAs, lncRNAs, and circRNAs. Readers 63 

are referred to other review articles for insights into additional classes of ncRNAs and 64 

their potential role in diseases17-20. We first provide a brief overview of the different ncRNA 65 

mechanisms and physiological roles, and then discuss the impact of ncRNA dysregulation 66 

in human disease. Finally, we review the use of ncRNAs as diagnostic and prognostic 67 

markers and targets of new therapeutic strategies.  68 

 69 

[H1] Mechanisms of action and functions of ncRNAs 70 

ncRNAs act through diverse mechanisms on target genes and interact with each other, 71 

creating a complex and dynamic regulatory RNA network21. Variations in the expression 72 

of a given ncRNA can affect the expression of other ncRNAs, altering many cellular 73 

processes including gene expression, RNA splicing, editing, intracellular transport, and 74 

translation22.  75 

 76 

[H2] microRNAs 77 

miRNAs are short ncRNAs that were first identified thirty years ago in Caenorhabditis 78 

elegans (C. elegans) 23,24. To date, more than 38,000 miRNAs from 271 species, including 79 

2,654 human mature miRNAs, have been annotated in the miRNA archive miRBase 80 

(v22.1)25. Functionally, it is predicted that the majority of the human transcriptome is under 81 

miRNA regulation26. The complexity of such regulation is demonstrated by the fact that a 82 

single miRNA can target hundreds of different messenger RNAs (mRNAs) and that 83 

multiple miRNAs can target a single mRNA27. Overall, miRNAs have a function in every 84 
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fundamental biological process, including cell proliferation, differentiation, and embryonic 85 

development, and their tissue-specific functions have been demonstrated28-30. 86 

The classic function of miRNAs involves binding to the 3’ untranslated region (UTR) 87 

of target mRNAs, leading to their degradation or translational repression31. This process 88 

requires miRNA association with an Argonaute (Ago) protein, which is the core 89 

component of the RNA-induced silencing complex (RISC). Once loaded onto an Ago 90 

protein, a miRNA can guide the RISC to a complementary target mRNA for translational 91 

repression or mRNA degradation. miRNAs also have the ability to inhibit protein 92 

expression by binding to coding regions (CDS) or the 5' UTR of mRNA molecules. For 93 

example, CDS-located miRNA interaction sites (miR-134, miR-296 and miR-470) in 94 

Nanog, Oct4 and Sox2, modulate embryonic stem cell differentiation30. 95 

Although miRNAs typically inhibit gene expression, there are instances in which they 96 

instead boost translation32. For example, human miR-369 has been shown to activate 97 

translation via a mechanism that involves direct binding to TNF-α and FXR132. Moreover, 98 

let-7 miRNA has been shown to upregulate the translation of its target mRNAs during cell 99 

cycle arrest and to repress translation in actively proliferating cells, indicating that miRNA 100 

function alters between repression and activation during cell cycle32. Additional ways in 101 

which miRNAs activate genes include their attachment to the CDS or the 5' UTR of 102 

mRNAs33,34. Despite the fact that these alternative miRNA mechanisms of action are less 103 

well studied, there is increasing evidence of their cellular relevance (Figure 1).  104 

In addition to regulating transcription within the cells in which they are produced, 105 

miRNAs can act as intercellular communication molecules through their secretion in 106 

extracellular vesicles or by acting as hormones35,36. Moreover, secreted miRNAs can 107 

directly target Toll-like receptor (TLR) proteins by acting as their ligands37, a mechanism 108 

that activates TLR signaling transduction pathways and induces an immune response38-109 

41. Recent studies have also revealed their interaction with non-Ago proteins [G], although 110 

the mechanism is poorly understood (Figure 1).  111 

 112 

[H2] Long non-coding RNAs 113 



   

 

   

 

5 

lncRNAs are a large and highly diverse class of ncRNAs that are >200 nucleotides in 114 

length42. The first lncRNAs identified in eukaryotes, H19 and Xist, were discovered long 115 

before the genomic era43,44; however, it took considerable time to recognize their broad 116 

biological functions. Although many lncRNAs have been identified to date, only a handful 117 

have been functionally characterized. The human GENCODE project estimated that there 118 

are 16,000 human lncRNAs, whereas the current version of the NONCODE database 119 

(v6.0) has annotated 96,411 human lncRNA genes, generating 173,112 lncRNA 120 

transcripts, an amount several times larger than the number of coding genes (estimated 121 

at around 20,000)45,46. 122 

lncRNAs can be transcribed in sense or antisense directions from various genomic 123 

regions, including introns or exons of overlapping protein-coding genes, intergenic 124 

regions (lincRNAs), pseudogenes (pseudogene-derived lncRNAs), transcribed 125 

ultraconserved elements (T-UCRs), telomeres (telomeric repeat-containing RNAs), 126 

centromeric repeats (centromeric lncRNAs), ribosomal DNA loci (promoter and pre-rRNA 127 

antisense, PAPAS), promoters (promoter-associated lncRNAs, PALRs), enhancers 128 

(eRNAs) and 3’-UTRs (UTR-associated RNAs)47. Similar to mRNAs, lncRNAs can be 129 

spliced; however, they usually contain fewer exons, are often retained in the nucleus and 130 

their abundance can be 10 times lower than mRNAs48,49. lncRNAs often show high tissue 131 

specificity and their expression alters dynamically during development50. 132 

The diversity of lncRNAs is also reflected in their function, which includes genomic, 133 

transcriptional, and translational regulation of neighboring and distant genes22,51-53. 134 

lncRNAs can directly interact with DNA, forming R-loops54, and can associate with 135 

enhancers or promoters, activating or suppressing their function55-58. By forming a 136 

complex with proteins, lncRNAs can also bind to the DNA and regulate chromatin by 137 

recruiting chromatin modifiers to the promoter region of their target genes59-61.  138 

As well as associating with DNA, lncRNAs can interact with various other RNAs, 139 

including mRNAs, circRNAs, and miRNAs. They can further influence RNA splicing and 140 

act as miRNA sponges [G] and thereby inhibit the target-repressing function of 141 

miRNAs62,63. In addition, through their interaction with proteins, lncRNAs can serve as 142 
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scaffolds or guides to promote the colocalization of proteins or facilitate protein-protein 143 

interactions64,65 (Figure 2). 144 

 145 

[H2] Circular RNAs 146 

CircRNAs are generated by back-splicing of linear transcripts and can be derived from 147 

exons, introns, exon-intron junctions, or intergenic regions of the genome66-68. Their 148 

circular structure makes circRNAs unsuitable for further processing, reducing 149 

susceptibility to exonuclease activity compared to linear RNAs, which results in a high 150 

degree of stability69. circRNA expression is often unrelated to the expression of their host 151 

genes70, and due to their stability, they can be more abundant than their associated linear 152 

mRNA71. With regards to their localization, circRNAs usually accumulate in the 153 

cytoplasm72; however, they are also present in the nucleus, and similarly to lncRNAs, 154 

circRNAs can also bind to the DNA and form circR-loops {Conn, 2023 #337}. Although 155 

the turnover of circRNAs is largely unknown70, it most likely involves secretion via 156 

exosomes73. 157 

CircRNAs can interact with miRNAs, mRNAs, or RNA-binding proteins (RBPs), 158 

activate or repress gene expression, or act as miRNA or protein sponges74. The 159 

complexity of the RNA network is well illustrated by the fact that circRNAs can sequester 160 

miRNAs and thereby indirectly influence the expression of their mRNA targets74. 161 

circRNAs can also function as protein ’enhancers’, either by forming a circRNA–protein 162 

complex75, acting as protein scaffolds76, or recruiting proteins to a specific loci or 163 

subcellular compartment that facilitates their colocalization and thereby influencing 164 

protein-protein interactions77,78. (Figure 3). 165 

 166 

[H2] ncRNA-encoded peptides 167 

Despite their original non-coding classification, it was uncovered in the last decade that 168 

some ncRNAs contain short open reading frames [G] (sORFs) that encode small 169 

regulatory peptides (sPEPs) [G], or micropeptides, consisting of less than 100 amino 170 

acids (AA)79-81. The first identified miRNA-encoded sPEPs (miPEP), miPEP171b (9 AA) 171 
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and miPEP165a (18 AA), were described in plants in 201582. Both pri-miR-171b and pri-172 

miR-165a miRNA precursors encode small proteins that enhance the accumulation of 173 

their corresponding mature miRNAs, leading to downregulation of their target mRNAs. 174 

After their discovery in plants, several studies have reported human sPEPs derived from 175 

ncRNAs and their potential roles in diseases83-85.  176 

Ribosomal profiling [G] experiments have uncovered many unexpected associations 177 

between ncRNAs and ribosomes. Combined with the development of various 178 

computational methods, these experiments have led to the discovery of thousands of 179 

sORFs and many ncPEPs86,87. Several of these ncPEPs have been experimentally 180 

validated88. For example, a muscle-specific lncRNA is translated into the 35 AA protein 181 

DWORF, which was shown to regulate intracellular calcium signaling in heart tissue87. 182 

Moreover, the lncRNA Linc00116 encodes a small peptide (56 AA), MTLN, that supports 183 

protein complex assembly in the mitochondria and inhibits the production of reactive 184 

oxygen species, thereby enhancing respiratory efficiency89. The identification of novel 185 

ncPEPs is ongoing, and their investigation can be facilitated by databases such as 186 

FuncPEP90, which currently lists 112 functional sPEPs encoded by ncRNAs and provides 187 

details on the ncRNA ’host’ transcripts. Another database, SPENCER, annotates cancer-188 

associated sPEPs encoded by ncRNAs91. 189 

Recent studies showed that, similarly to miRNAs and lncRNAs, some circRNAs can 190 

also encode proteins92,93. Owing to the lack of the 5’ end, translation initiation from 191 

circRNAs requires N6-methyladenosine (m6A) modification94 or an IRES, which is usually 192 

rare in eukaryotic transcripts but has been identified in eukaryotes through systematic 193 

investigations95,96. Like the general function of many circRNAs, the function of their 194 

encoded peptides is largely unknown. Several hypotheses have been put forward about 195 

the role of translated circRNAs97, including the generation of rapidly degraded peptides 196 

that regulate immune surveillance, acting analogous to lncRNA-encoded proteins and, 197 

therefore, participating in nonsense-mediated mRNA decay, or inhibiting the translation 198 

of other RNAs by sequestering ribosomes97. Regardless of the precise biological role, it 199 

has been hypothesized that translated circRNAs might have evolutionarily conserved 200 

functions, as their sequence is highly conserved across different species93. 201 
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 202 

[H1] ncRNA dysregulation in human disease 203 

Because their regulatory functions are crucial for normal cell activities, it is not surprising 204 

that dysregulation of ncRNAs leads to human disease8,98. Indeed, perturbations in ncRNA 205 

biology have been linked to a wide range of conditions, including cancer, cardiovascular 206 

diseases, neurological disorders, infectious diseases, and sepsis (Figure 4). Generally, 207 

in diseased tissues, ncRNAs are dysregulated as a consequence of genomic structural 208 

and copy number variations, epigenetic modifications, or transcription factor alterations 209 

99,100. Several databases, such as The Human MicroRNA Disease Database101 for 210 

miRNAs, and LncRNADisease102,103 for lncRNAs and circRNAs, can be useful resources 211 

for up-to-date information on disease-related ncRNAs. Ultimately, gaining a deeper 212 

understanding of the involvement of ncRNAs in disease could pave the way for the 213 

development of innovative diagnostic and therapeutic approaches.  214 

 215 

[H2] Non-coding RNAs in cancer 216 

The first evidence of ncRNA involvement in human cancer came in 2002 from genetic 217 

studies of patients with chronic lymphocytic leukemia (CLL)104, the most common type of 218 

leukemia in the Western world277. Loss of chromosome region 13q14 is a common feature 219 

observed in CLL and is often the only genetic abnormality that is found in leukemic cells. 220 

Notably, the 13q14 region harbors genes encoding precursors of miR-15a and miR-16-1, 221 

which were later characterized as tumour suppressors through their targeting of BCL-2104 222 

and MCL1105. Soon after these discoveries, other miRNA-encoding loci were shown to be 223 

frequently located in the fragile regions of chromosomes106,107 and lost or disrupted in 224 

various cancer types108,109,52.  225 

Due to the complexity of miRNA regulation, one of the biggest challenges is 226 

understanding whether miRNA dysregulation is the cause or consequence of the disease. 227 

Nonetheless, pan-cancer analyses have uncovered that certain miRNAs, such as the 228 

oncogenic miR-21 and miR-155, or the tumour suppressors miR-16 and miR-145, are 229 

commonly dysregulated in several types of cancer 110,111. These studies have identified 230 
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miRNA signatures that are consistent across 15 different cancer types and indicate a 231 

major role in regulating the particular hallmarks of cancer. For example, miR-210, miR-232 

21-3p, and let-7a-3p were associated with hypoxia gene signatures110,111. The miR-29 233 

family regulates the DNA demethylation pathway members TET1 and TDG110,111. miR-21, 234 

which was shown to be overexpressed in a large variety of cancers112,113, is involved in 235 

therapy resistance114 and tested as a cancer biomarker115. miR-324 has an oncogenic role 236 

both in malignant cells and the surrounding tumor microenvironment (TME), specifically 237 

in neurons in mouse models of oral cancers116, where miR-324 (in conjunction with miR-238 

21 and opposition of miR-34a) promotes neuritogenesis. 239 

Certain miRNAs can function as either an oncogene or a tumor suppressor, depending 240 

on tumor type, tumor stage, and the tumor microenvironment (TME), which further 241 

emphasizes that miRNA functions need to be investigated in a context-dependent 242 

manner110,117. For example, dysregulation of miR-324 was described in various cancer 243 

types including colorectal and gastric cancers, and its oncogene and tumor suppressor 244 

functions have been both demonstrated depending on the cellular context118. Meanwhile, 245 

several lncRNAs and circRNAs, including the lncRNA MALAT1 can act as a sponge for 246 

miR-324118. miRNAs from the let-7 family have been also shown to exhibit dual 247 

functionality, acting as tumor suppressors in cancer cells while concurrently exerting 248 

oncogenic effects within the TME119. Recently, an estrogen-driven mechanism was 249 

discovered in which estrogen receptor-positive breast cancer cells eliminate the tumor 250 

suppressor members of let-7 family via extracellular vesicles, and these have oncogenic 251 

effects through the immunostimulatory (M1) macrophage activation and polarization in 252 

the TME36. Similarly, miR-21 released inside extracellular vesicles by glioblastoma cells 253 

was demonstrated to act on microglial cells of the TME changing the levels of target 254 

genes, including Btg2, and consequently their phenotype120. 255 

Sequence conservation suggests positive selection during evolution and is therefore 256 

an important hint of potential functionality. Plenty of lncRNAs are transcribed from 257 

genomic regions that are perfectly conserved between humans, mice, and rats, termed 258 

ultraconserved elements (UCEs)121. However, newly-evolved, human, or primate-specific 259 

elements (pyknons) are also an interesting topic of research, and their non-coding 260 

transcripts were found to have a role in cancer progression122. 261 
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After their discovery, miRNA-encoded peptides (miPEPs) gained intense research 262 

interest, with several studies reporting the involvement of human ncPEPs in growth and 263 

development, as well as disease. More recently, the pri-miR-34a-encoded miPEP133 264 

(133 AA) has been demonstrated to positively regulate its own pri-miRNA in human 265 

cancer cell lines, in which it functions as a tumour suppressor123. In contrast, pri-miR-31-266 

encoded miPEP31 (44 AA) decreases the expression of miR-31 by binding to its promoter 267 

region, inhibiting transcription initiation. miPEP31 is highly expressed in regulatory T cells 268 

(Treg), promotes Treg cell differentiation, and suppresses experimental autoimmune 269 

encephalomyelitis124. Pri-miR-155-encoded miPEP155 (17 AA) does not influence the 270 

expression of pri-miR-155 but increases the expression of the oncogenic Rictor and 271 

EGFR genes in HeLa cells125. Pri-miR-147b-encoded MOCCI micropeptide seems to 272 

have a role in the immune response to viral infection126, whereas miPEP200a (187 AA) 273 

and miPEP200b (54 AA), encoded by pri-miR-200a and pri-miR-200b, respectively, 274 

inhibited the migration of prostate cancer cells in vitro127. 275 

A lncRNA-encoded peptide identified to have a role in cancer is HOXB-AS3 (53 AA), 276 

translated from the lncRNA HOXB-AS3, which was shown to suppress colon cancer 277 

growth; its loss is a critical oncogenic event in metabolic reprogramming128. Several 278 

lncRNA-encoded micropeptides have been further associated with cancer, such as the 279 

LINC00665-encoded CIP2A-BP (52 AA) and LNC00908-encoded ASRPS (60 AA), both 280 

of which inhibit breast cancer progression129,130. 281 

Through their roles in development, apoptosis, stress responses and cell cycle 282 

regulation, circRNAs-encoded peptides could be important in cancer initiation and 283 

progression94. Indeed, several circRNAs-encoded proteins, such as FBXW7-185aa, 284 

SHPRH-146aa, and PINT-87aa were shown to suppress glioma tumourigenesis84,131,132. 285 

Moreover, a recent study proposed a tumor suppressor role for the circRNA-encoded 286 

protein circFGFR1p (87 AA), which negatively regulates the FGFR1 oncoprotein97. Future 287 

research should focus extensively on the functions of ncRNA-encoded peptides and their 288 

coding mechanisms. Although there are still many challenges for such research, 289 

advances in coding prediction tools and genomics technologies should facilitate the 290 

progress. 291 
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 292 

[H2] ncRNAs in cardiovascular diseases 293 

Cardiovascular diseases (CVDs), including myocardial infarction, atherosclerosis, heart 294 

failure, and cardiac hypertrophy, remain the leading cause of mortality and morbidity in 295 

the world133. ncRNAs are relevant for heart physiological activity and are involved in CVD 296 

processes through their functions in regulating apoptosis, proliferation, migration, cardiac 297 

remodeling, fibrotic responses and cardiac hypertrophy134,135. Emerging studies have 298 

revealed that miRNAs are involved in the pathogenesis of CVDs. A notable example is 299 

miR-21, which is upregulated in humans and mice with cardiac allograft vasculopathy 300 

(CAV), which is a complication of heart transplantation that limits long-term survival136. 301 

Moreover, miR-21 is also overexpressed in a mouse model of cardiac fibrosis caused by 302 

myocardial infarction, and correlated with attenuated TGFβRIII levels137. Silencing of miR-303 

21 via antagomir-21 could disrupt CAV and prolong cardiac allograft survival136 as well as 304 

reduce hypertrophy and fibrosis and restore impaired cardiac function138. It was also 305 

recently demonstrated that anti-miR-21 treatment successfully suppressed miR-21 and 306 

improved cardiac function in a pig model of ischemia–reperfusion injury with reduced 307 

cardiac fibrosis and hypertrophy139. 308 

miR-122 is abundantly expressed in various cardiovascular cell types. Upregulation 309 

of miR-122 was shown in patients with systolic dysfunction, cardiovascular fibrosis and 310 

cardiovascular remodeling140. Mechanistically, miR-122 was shown to directly inhibit the 311 

anti-apoptotic protein Xiap in a mouse model of cardiovascular disease, promoting 312 

endothelial cell apoptosis141. Moreover, circulating miR-122 level correlated negatively 313 

with cardiac function and has been shown to be an important indicator with both predictive 314 

and prognostic value for cardiac recovery140. In the same study, it was revealed that miR-315 

122 inhibits the expression of the anti-apoptotic BCL2 and thereby decrease the viability 316 

of cardiomyocytes140. 317 

The exact role of lncRNAs in CVDs has recently started to be elucidated. Notably, 318 

cardiac mesoderm enhancer-associated ncRNAs (CARMNs) are among the most 319 

thoroughly annotated lncRNAs. These lncRNAs are predominantly expressed in smooth 320 

muscle cells (SMCs) and are significantly upregulated in post-myocardial infarction142,143. 321 
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Analysis of publicly available transcriptomic datasets has revealed a reduction in the 322 

expression of CARMNs in cerebral arteries with aneurysms and human atherosclerotic 323 

arteries142. Downregulation of CARMNs in human coronary artery SMCs resulted in 324 

enhanced cell proliferation and migration in vitro, and significantly attenuated the 325 

expression level of SMC-specific marker genes including MYH11, ACTA2, CNN1, 326 

and TAGLN142. Furthermore, RNA immunoprecipitation assays confirmed that CARMN 327 

could interact with MYOCD (Myocardin), an activator of SMC-specific genes and 328 

transcriptionally active in cardiomyocytes as well as in SMCs142.  329 

Adult mammalian hearts fail to regenerate after ischemic injury, primarily due to a 330 

decline in cardiomyocyte mitosis. Yet, the specific molecular mechanisms that account 331 

for the non-dividing nature of adult cardiomyocytes remain largely unknown144. Cardiac 332 

regeneration-related lncRNA (CAREL) is increased in expression in postnatal hearts and 333 

has been associated with regeneration during cardiac injury144. Indeed, the capacity for 334 

cardiomyocytes to proliferate, an important step in regeneration, was attenuated in 335 

transgenic mice that overexpress CAREL144. In contrast, knocking down of CAREL in 336 

cardiomyocytes by adenoviral shRNA increased the proliferation of cardiomyocytes and 337 

enhanced cardiac regeneration after injury. Further experiments using biotin-avidin pull-338 

down and luciferase assays in human embryonic kidney cells (HEK293) and neonatal 339 

cardiomyocytes have revealed that CAREL acts as a competing endogenous RNA to 340 

miR-296, a positive regulator of cardiac replication and regeneration144. Other lncRNAs, 341 

such as ZFAS1145, SNHG3146, ExACT1147, MIAT148, CPhar148, Mhrt779148, H19149 and 342 

CPR150, have been implicated in myocardial ischemia-reperfusion injury, aortic valve 343 

calcification, pathological hypertrophy, and heart failure, atherosclerosis in carotid 344 

arteries, physiological cardiac hypertrophy, pulmonary arterial hypertension, and 345 

cardiomyocyte proliferation, respectively. 346 

It has also been reported that several circRNAs have an important role in heart failure 347 

and myocardial infarction. Global circRNA profiling demonstrated that the ultraconserved 348 

circ-INSR, derived from the gene encoding the insulin receptor (INSR), regulates 349 

mitochondrial functions in cardiomyocytes under doxorubicin stress151. In human and 350 

mouse failing heart tissue, the expression of circ-INSR was diminished, inducing 351 

apoptosis of cardiomyocytes and impairing metabolic activity151. Consistent with this 352 
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observation, overexpression of circ-INSR successfully decreased doxorubicin-induced 353 

DNA damage and apoptosis of primary rat cardiomyocytes151.  354 

In a recent study, researchers identified and investigated the function of circHIPK3, 355 

derived from exon 2 of the HIPK3 gene within mouse heart. CircHIPK3 negatively 356 

regulates the RBP Hur at the post-transcriptional level, which leads to the destabilization 357 

of p21 mRNA in a rat cardiomyocyte cell line (H9C2) and primary mouse 358 

cardiomyocytes152. In addition, circMAP3K5 is known to be associated with SMC 359 

differentiation by sponging miR-22-3p and thereby inducing the expression of TET2 153. 360 

A recent study demonstrated the protective effects of circSlc8a1 (a circular antisense 361 

RNA) in the context of heart injury, highlighting the important role of circSlc8a1 in 362 

preserving physiological heart function154. The experimental induction of cardiac-specific 363 

expression of cA-circSlc8a1 in mice resulted in profound phenotypic alterations, notably 364 

characterized by a substantial increase in body weight, hepatic steatosis, and impaired 365 

cardiac function154. Another study demonstrated that the circNlgn, along with its translated 366 

product Nlgn173, is a mediator of doxorubicin-induced cardiofibrosis 155. Silencing 367 

endogenous circNlgn has been found to reduce doxorubicin-induced cardiomyocyte 368 

apoptosis and enhance cardiomyocyte viability. Moreover, the silencing of circNlgn 369 

effectively inhibits collagen deposition and enhances the expression of fibrosis markers. 370 

These findings suggest that targeting circNlgn could potentially alleviate the adverse 371 

effects associated with doxorubicin, particularly its impact on fibrosis development155. 372 

In summary, ncRNAs have emerged as crucial regulators of cardiovascular 373 

diseases156 157, highlighting a promising research area that warrants further exploration. 374 

Future research should continue to elucidate the molecular mechanisms and potential 375 

therapeutic applications of ncRNAs, while large-scale, multicenter studies will have a 376 

crucial role in validating their translational feasibility from the laboratory to the clinic. 377 

 378 

[H2] Non-coding RNAs in neurodegenerative disorders 379 

Neurodegenerative disorders, such as Alzheimer disease, Parkinson disease, 380 

amyotrophic lateral sclerosis (ALS), and Huntington disease, are characterized by 381 
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degeneration and loss of neurons in specific areas of the brain and the spinal cord. 382 

Neurodegenerative disorders are currently irreversible and tend to worsen over time with 383 

no effective treatment available; they are thus associated with severe morbidity and are 384 

considered one of the leading causes of death by the World Health Organization (WHO).  385 

Dysregulation of miRNA expression has been frequently observed in the central 386 

nervous system and is a powerful modulator of the onset of neurodegeneration158. It has 387 

been shown that increased expression of miR-29b-3p in striatal medium spiny neurons 388 

(MSN) is associated with age and contributes to the degeneration of MSNs in Huntington 389 

disease by directly targeting the 3’-UTR of STAT3159. Downregulation of STAT3 390 

diminished autophagy and increased apoptosis in patient-derived MSNs. In Huntington 391 

disease-MSNs, administration of anti-miR-29b-3p reduced neural cell death, whereas the 392 

depletion of STAT3 counteracted the therapeutic effect of anti-miR-29b-3p treatment159. 393 

In other instances, miR-520f-3p, miR-135b-3p, miR-4317, miR-3928-5p, and miR-8082 394 

have been found to be significantly differentially expressed in patients with Huntington 395 

disease compared to the control group160. Also, several miRNAs have been associated 396 

with Alzheimer disease through directly regulating disease-associated risk factors, 397 

including beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), amyloid 398 

protein precursor (APP) cleavage, and presenilin-1 (PSEN1)161. Moreover, an elevated 399 

miR-543 level was found in the white matter tissue of patients with early-stage Parkinson 400 

disease, associated with a decreased level of SIRT1 protein, a potential target of mR-401 

543. Subsequent in vitro experiments confirmed SIRT1 as a direct target of miR-543 and 402 

the upregulation of miR-543 resulted in transcriptional downregulation of SIRT1 in a 403 

neuroblastoma cell line and foetal astrocytes162. 404 

As many lncRNAs (~40%) are expressed in a brain-specific manner163, experimentally 405 

altering their expression might lead to important insights into neuronal development and 406 

the pathogenesis of neurodegenerative disorders. However, only a small proportion of 407 

lncRNAs have been studied with regard to their role in neurodevelopment and brain 408 

function. For example, the lncRNA RUS, located upstream of the Slitrk3 gene, is 409 

predominantly expressed in neural tissues, and its level increases during the 410 

differentiation of neural stem cells into neurons164. Depletion of RUS resulted in 411 

proliferation arrest and induced apoptosis in mouse embryonic cortical neural stem 412 
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cells164. Another example is the lncRNA TUNA, which has been implicated in the neural 413 

differentiation of mouse embryonic stem cells165. When TUNA is depleted, embryonic 414 

stem cell proliferation is compromised, although pluripotency is maintained. The TUNA-415 

RNA binding proteins complex was detected at the promoters of important regulators of 416 

embryonic stem cell differentiation, including Nanog, Sox2 and Fgf4. Single knockdown 417 

of each of these RBPs led to inhibition of neural differentiation of mouse ESCs, similar to 418 

the effect of TUNA knockdown165. 419 

The role of circRNAs in the molecular pathogenesis of neurodegenerative disorders 420 

and brain aging was recently reviewed166. Several circRNAs associated with 421 

neurodegenerative diseases were shown to act as miRNA sponges, such as circHDAC9, 422 

circSAMD4A, circDLGAP4, and circSLC8A1166. The mechanisms of action of these 423 

circRNAs during normal conditions remain unknown, and it is therefore difficult to 424 

determine their exact role in disease development. In rat spinal cord injury (SCI) models, 425 

the expression of circRNA-2960 was found to be significantly enriched and it was 426 

suggested that circRNA-2960 might exacerbate secondary damage to the spinal cord. 427 

Mechanistically, circRNA-2960 inhibits its target miR-124, a molecule that prevents 428 

secondary injuries from SCI and promotes injury recovery. The regulation of miR-124 429 

expression by circRNA-2960 could therefore represent a crucial mechanism that 430 

influences the prognosis of SCI167. Overall, despite clear evidence of aberrant expression 431 

of circRNAs in neurological disorders168-170, the functional significance of these alterations 432 

remains to be thoroughly investigated. Because each ncRNA could be involved in 433 

different pathways in neurons, further studies at the level of singular targets of specific 434 

ncRNAs are warranted to discover ncRNAs that could serve as biomarkers and 435 

therapeutic targets for neurodegenerative disorders. 436 

 437 

[H1] ncRNAs in infectious diseases and sepsis  438 

Many studies have assessed how ncRNAs are involved in immune defense against 439 

microbial infections171,172. When considered collectively, ncRNAs act as positive or 440 

negative regulators to encourage a balanced immune response for an effective defense 441 
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against pathogens173. In Box 1 we highlight the example of miR-155, which is functionally 442 

involved in many types of diseases, and discuss its therapeutic use. 443 

miRNAs have been functionally connected to the cellular response during microbial 444 

infections. For example, miR-718, which is encoded from the 5’ UTR of IRAK1, was 445 

shown to have an anti-inflammatory function through targeting PTEN174. IRAK1 is an 446 

important component of the TLR signaling pathways and thereby has a role in innate 447 

immunity, whereas PTEN downregulation by miR-718 decreases proinflammatory 448 

cytokine production through its downstream target molecules174. Pre-miR-718 is highly 449 

conserved across mammals and decreased miR-718 expression was shown to be 450 

associated with Neisseria gonorrhoeae infection174. It was hypothesized that miR-718 can 451 

help to evade recurrent bacterial infections and lower the lipopolysaccharide (LPS)-452 

induced mortality rate by establishing LPS-induced tolerance174. On the same TLR 453 

pathway, let-7i directly binds to and downregulates TLR4175, participating in the immune 454 

response against Cryptosporidium parvum, a parasite that causes intestinal and biliary 455 

infections. 456 

It was shown that MALAT1 lncRNA is a key player in controlling macrophage M1/M2 457 

polarization176. Briefly, MALAT1 expression is upregulated in LPS-treated macrophages, 458 

which differentiate towards a proinflammatory M1 phenotype, and it is downregulated in 459 

IL-4-treated cells, which differentiate in the M2 subtype. Notably, MALAT1 knockdown 460 

decreases LPS-induced M1 macrophage activation, whereas IL-4–induced M2 461 

differentiation and a macrophage profibrotic phenotype are increased by MALAT1 462 

knockdown176. Consistent with these observations, an independent study found that the 463 

expression of Mirt2 lncRNA is elevated upon activation of the LPS-p38-Stat1 and LPS-464 

IFN-α/β-Stat1 pathways in mouse macrophages177. Increased levels of Mirt2 upon LPS 465 

treatment inhibited the K63-ubiquitination of TRAF6 and relieved inflammatory responses 466 

after TLR4 activation177. Other early experiments found that treating M2 microglia cells 467 

with IL-4 caused a dramatic decrease in the expression of lncRNA GAS5 compared with 468 

resting microglia178. Mechanistically, GAS5 negatively regulates the transcription of IRF4 469 

by binding PRC2 to inhibit M2 polarization178. Recently, it was reported that ablation of 470 

the mouse lncRNA Malat1 activates the antioxidant pathway and alleviates sepsis179. 471 
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 472 

[H2] Sepsis and the balance between human and viral miRNAs 473 

Sepsis, the final stage of full-body disequilibrium to pathogenic bacterial, viral or fungal 474 

infections, remains a leading cause of human death and currently has no pathogenesis-475 

specific therapy180. Since the initial discovery of downregulated miR-150 in peripheral 476 

blood cells and plasma from patients with septic shock181, a substantial number of 477 

dysregulated cellular miRNAs in sepsis have been identified182. Cellular overexpression 478 

of miR-150 was sufficient to inhibit the pre-pro-B cell to pro-B cell transition by targeting 479 

MYB and FOXP1, respectively183,184. The miR-212 and miR-132 cluster was found to 480 

have a similar effect through negative regulation of FOXP1 and SOX4, respectively185. In 481 

another study, the loss of function of the miR-15 family, which comprises the miR-482 

15a/miR-16-1, miR-15b/miR-16-2, and miR-497/miR-195 clusters, reduced normal pre-B 483 

differentiation by directly targeting cyclin E1 and D3186. Another recent study reported that 484 

miR-146a-5p is highly enriched in Leishmania donovani-infected bone marrow-derived 485 

macrophages (BMDMs), and positively correlates with dose and time of infection, which 486 

was further examined in an in vitro mouse model187. In infected BMDMs, downregulation 487 

of miR-146a-5p led to a decrease in Arg1 expression and abundance of iNOS. It was 488 

observed that silencing BRD4 effectively restored miR-146a-5p expression and M2 489 

polarization marker expressions in infected BMDMs187. Another therapeutically important 490 

sepsis-related miRNA, miR-93-5p, was uncovered by analyzing mouse and baboon 491 

models of sepsis, in addition to human peripheral blood mononuclear cells (PBMCs) 492 

obtained from patients with sepsis. In an in vivo mouse sepsis model, inhibition of miR-493 

93-5p reduced inflammatory monocytes and increased circulating effector memory T 494 

cells, resulting in longer survival188. 495 

Although investigation of a single miRNA can yield insight into its biological function, 496 

it does not capture the complex, interconnected network of miRNAs that control cell 497 

biology and disease. In patients with sepsis, the miRNA network exhibits significantly less 498 

connection when compared to that of healthy controls. Perhaps explaining this 499 

observation, several miRNAs, including miR-16, miR-29a, miR-146, miR-155, and miR-500 
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182, were reported to be ‘sponged’ by their protein coding targets in patients with 501 

sepsis189. 502 

Unexpectedly, it was discovered that Kaposi sarcoma virus (KSV)-produced miRNAs 503 

are differentially expressed in sepsis and may be used for diagnostic and therapeutic 504 

purposes. Specifically, elevated levels of miR-K-10b and miR-K12-12* play a functional 505 

role in sepsis as agonists of TLR8, leading to cytokine dysregulation characteristic of a 506 

cytokine storm190. Moreover, the viral Epstein Barr miR-BHRF-1 and the KSV miR-K12-507 

12 were detected in plasma during the early systemic response to injury and were 508 

associated with unfavorable outcomes in polytrauma patients191. Starting from these 509 

observations, we suggest considering non-human (particularly viral) ncRNAs when using 510 

next-generation sequencing (NGS) methods to screen for ncRNAs involved in sepsis and 511 

other human diseases. Although virus-encoded-ncRNAs have largely been linked to 512 

immune evasion, virus life cycle regulation and virus-induced tumorigenesis192, there is a 513 

considerable gap in understanding the specific mechanisms and processes underlying 514 

these functions. 515 

 516 

[H2] SARS-CoV-2 infection and ncRNAs 517 

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 518 

coronavirus 2 (SARS-CoV-2), has led to hundreds of millions of confirmed cases and 519 

millions of deaths all over the world in the last few years193. The importance of ncRNAs 520 

in infectious diseases prompted scientists to swiftly investigate their potential role in 521 

COVID-19 soon after the beginning of the pandemic194. As a result, several studies 522 

published in the last three years demonstrate the involvement of miRNAs and lncRNAs 523 

in COVID-1912,195-197. 524 

A recent study reported that SARS-CoV-2 expresses a miRNA-like small RNA, termed 525 

CoV2-miR-O7a, which is derived from the coding region of the ORF7a transcript195. 526 

CoV2-miR-O7a is associated with Ago proteins, seems to influence interferon signaling 527 

pathways, and may contribute to SARS-CoV-2 pathogenesis195. It has also been shown 528 

that lncRNAs, such as CHROMR, are overexpressed in patients with SARS-CoV-2 529 
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infection198. Depletion of CHROMR resulted in attenuated interferon-stimulated gene 530 

expression and the sequestration of the nuclear repressor complex, IRF-2/IRF2BP2198. 531 

In addition, other lncRNAs, such as PIRAT and LUCAT1 have been shown to be 532 

upregulated in patients with COVID-19 and were implicated in the progression of the 533 

disease. PIRAT appears to be preferentially expressed in myeloid cells and has been 534 

connected to tissue infiltration in infectious and inflammatory diseases197. Through the 535 

inhibition of alarmin expression, PIRAT creates a negative feedback loop with PU.1, 536 

located in the nucleus of human monocytes197. Consistent with this finding, negative 537 

feedback regulation was observed between LUCAT1 and Jack-STAT-dependent IFN 538 

immunity199. 539 

Coronavirus transcriptomes seem to contain additional components that contribute to 540 

the intensified inflammatory responses observed in patients with SARS-CoV-2, SARS, 541 

and Middle East Respiratory Syndrome (MERS) 200. circRNAs encoded by coronavirus 542 

genomes have been identified and are implicated in viral pathogenesis200. For instance, 543 

two SARS-CoV-2 circRNAs contain IRES signals and have the potential for translation200. 544 

Moreover, in a study utilizing the human-pathogenic MERS-CoV as a model, the 545 

interactions between circRNAs and key components of the host cell competing 546 

endogenous RNA network were demonstrated, revealing several differentially expressed 547 

circRNAs during coronavirus replication201. Downregulation of circFNDC3B and 548 

circCNOT1 resulted in a substantial reduction in MERS-CoV viral load in human lung 549 

cancer cells (Calu-3) and fibroblast cells (HFL1), potentially related to the downregulation 550 

of their target genes, specifically MAP3K9 and USP15201. Further research is needed to 551 

identify clinically applicable ncRNA signatures and explore the role of ncRNA in 552 

immunological and peripheral system regulation. However, a signature composed of 6 553 

lncRNAs including NRIR, BISPR, MIR155HG, FMR1-IT1, USP30-AS1, and U62317.2 554 

has been shown to be associated with the regulation of SARS-CoV-2 infection196. 555 

Moreover, the importance of coronavirus infections as a source of interacting RNA and 556 

identifying novel drug targets for patients affected by SARS-CoV, SARS-CoV-2, and 557 

MERS patients remain important areas of investigation. 558 

 559 
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[H1] ncRNAs as disease biomarkers  560 

Interest among the scientific community in the use of ncRNAs as disease biomarkers rely 561 

on several critical observations and considerations. First, relevant changes in ncRNA 562 

expression or activity have been detected in pathological tissues, rendering these 563 

molecules good indicators of underlying disease state or specific disease features202. 564 

Second, technologies are available for quantifying small and long ncRNAs in different 565 

tissue types and across different preservation methods (such as fresh frozen and fixed 566 

tissue samples). These span from PCR-based assays, through hybridization-based 567 

methods to NGS-based technologies. Finally, it is possible to quantify specific ncRNA 568 

molecules in cellular and subcellular compartments of diseased cells, as well as in 569 

extracellular compartments (such as extracellular vesicles, body fluids including urine, 570 

saliva, cerebrospinal fluid, synovial fluid, placenta, and breast milk)203, which makes these 571 

molecules suitable for liquid biopsy applications. MicroRNAs were recently found to be 572 

selectively inserted in extracellular vesicles, that also display a moderate content of small 573 

ncRNAs, the distribution and composition of which depends on the size and isolation 574 

method. Comprehensive review articles have recently been published covering the main 575 

discoveries on biomarker ncRNAs and human diseases8,204-210. 576 

Several considerations should be made regarding studies on lncRNA in liquid biopsy 577 

samples. The levels of lncRNA in plasma and serum are particularly low compared to 578 

intracellular levels, their detection can be challenging, and their stability can be a 579 

concern211-213. Therefore, the preanalytical steps should be well-standardized, and the 580 

appropriate reference genes should be selected carefully211-213. Furthermore, the 581 

examination of genome-wide miRNA expression profiles in both healthy and diseased 582 

aging individuals has revealed that age has a significant impact on blood miRNA 583 

composition, potentially compounding the interpretation of results in the older 584 

population214,215. 585 

 586 

 [H2] ncRNAs as biomarkers in cancer 587 

Each year, thousands of papers are published on the differential expression of ncRNAs 588 

in various types of cancer. Although many of these studies suggest that the identified 589 
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dysregulated ncRNAs have potential as biomarkers and/or therapeutic targets, only a 590 

small fraction will reach in clinical trials. The NIH Early Detection Research Network 591 

(EDRN) and the ClinicalTrials.gov database are useful to track the hundreds of ongoing 592 

clinical trials of ncRNAs as potential biomarkers for cancer and other diseases. Table 1 593 

provides examples of clinical trials that examine the use of ncRNAs as biomarkers of 594 

disease; a comprehensive summary of clinical trials at ClinicalTrials.gov is provided in 595 

Supplementary Table 1.  596 

 597 

[H3] ncRNAs as tissue biomarkers 598 

Among the small ncRNA biomarkers most broadly tested in cancer tissues is miR-21-5p, 599 

which has been validated as a diagnostic or prognostic biomarker in most frequent 600 

cancers, such as lung216, breast217, colorectal218,219, and CLL220. miR-21 is also released 601 

in circulation and detectable in extracellular vesicles, as described in the next section. 602 

miR-506-3p is another miRNA that has demonstrated significant prognostic potential 603 

across multiple cancer types, including ovarian, pancreatic, and gastric cancer221-223. 604 

Likewise, miR-31-3p has predictive potential and has been shown to have clinical 605 

relevance in metastatic colorectal cancer (CRC). Specifically, low levels of miR-31-3p 606 

have been identified as a predictor of response to anti-EGFR therapy in two clinical 607 

studies224,225. Currently, miR-10b-5p is the subject of investigation in an ongoing multi-608 

site clinical trial on gliomas as a potential biomarker (NCT01849952) and has been 609 

identified as a potential therapeutic target in advanced glioblastoma226. 610 

Regarding lncRNA biomarkers, the most studied lncRNA in cancer tissues is HOTAIR. 611 

HOTAIR is involved in chromatin reprogramming, and its expression has been tested as 612 

a diagnostic or prognostic and predictive biomarker in ovarian227, colorectal228, breast229, 613 

esophageal230, and pancreatic231 cancer. MALAT1 has been identified as an early 614 

prognostic marker for metastasis development in surgically removed lung cancer232, while 615 

CCAT1 and CCAT2 have well-characterized mechanistic roles and serve as prognostic 616 

biomarkers for CRC233,234. The detection of PCA3 in urine is an FDA-approved diagnostic 617 

biomarker for prostate cancer. Furthermore, the combined measurement of PCA3 and 618 
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the TMPRSS2:ERG gene fusion in prostate biopsy can improve the detection of prostate 619 

cancer235. 620 

 621 

 [H3] ncRNA biomarkers in liquid biopsies and extracellular vesicles 622 

Circulating ncRNA biomarkers gained much attention in biomedical research when it was 623 

discovered that several tumour-associated miRNAs, including miR-155 and miR-21, were 624 

elevated in the serum of patients with diffuse large B cell lymphoma (DLBCL)236. 625 

Additionally, serum levels of miR-141 were found to distinguish patients with prostate 626 

cancer from healthy controls. It subsequently became clear that miRNAs are stable in a 627 

large variety of biological fluids203. 628 

As aberrant miR-21-5p expression is associated with inflammatory events, increased 629 

levels of this miRNA in serum or plasma have been reported in many human conditions, 630 

spanning from cancer to cardiac disorders. In cancer, there is now convincing data on the 631 

value of miR-21-5p as a biomarker for gastric, esophageal and prostate cancer218,237-239. 632 

Among the circulating miRNAs with the confirmed diagnostic value, miR-371-3p is highly 633 

promising; indeed, a prospective multicentric study on testicular germ cell tumours240 634 

(teratoma excluded), revealed that miR-371-3p had a detection accuracy greater than 635 

90%, higher than standard-of-care biomarkers, including alpha-fetoprotein in surgically 636 

resected tumours241. ncRNA biomarkers can be particularly useful in diseases that are 637 

difficult to diagnose, and where no coding gene-based biomarkers have been 638 

identified242. 639 

A frequently explored opportunity in biomarker studies of circulating miRNAs is the 640 

use of miRNA signatures, composed of miRNAs that are expressed concordantly. Two 641 

studies have proposed miRNA signatures consisting of 13 miRNAs for early detection of 642 

lung cancer, to be used alone243,244 or in combination with low-dose Computer 643 

Tomography (CT) scan245, with promising results in clinical trials. Another group validated 644 

an eight miRNA signature for the early diagnosis of esophageal squamous cell 645 

carcinoma239 in different prospective cohorts. A circulating miRNA signature composed 646 

of five miRNAs can distinguish more aggressive prostate cancers246.  647 
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The levels of miR-25-3p and miR-92a-3p were tested as prognostic biomarkers in 648 

patients with liposarcoma since they are secreted by liposarcoma cells through 649 

extracellular vesicles. The secreted miRNAs indeed act as proinflammatory signals for 650 

tumour-associated macrophages247. 651 

Detection of unmethylated fragments of the lncRNA XIST in plasma has been 652 

associated with testicular cancer presence248 and proposed as a testicular germ-cell 653 

tumour biomarker249. Moreover, the lncRNA ANRIL was found to be upregulated in bone 654 

marrow mononuclear cells of patients with acute myeloid leukemia (AML) compared to 655 

healthy donors and suggested to serve as a valuable prognostic biomarker for AML250. 656 

 657 

[H2] ncRNAs biomarkers in cardiovascular diseases 658 

ncRNAs with a diagnostic role in cardiovascular disease have been extensively 659 

investigated206. Cardiac tissue is not easily accessible; therefore, biomarkers of cardiac 660 

disorders are commonly tested in the blood or blood derivatives (plasma and serum)251. 661 

A prospective study tested the association between extracellular miRNA levels and heart 662 

failure risk in approximately 2,400 individuals252. Three plasmatic miRNAs (miR-17, miR-663 

20a, and miR-106b) were associated with heart failure, such that individuals with higher 664 

levels of these miRNAs had a 15% reduction in long-term incident heart failure, after 665 

adjustments for other risk factors. 666 

Cardiac tissue-specific miR-1, miR-133, and miR-208 (collectively known as myomirs) 667 

have been tested as circulating biomarkers in different settings. These miRNAs are 668 

collectively released to the circulation upon heart failure253 and were proposed as 669 

diagnostic biomarkers to distinguish coronary artery disease (CAD, the primary cause of 670 

mortality in the United States), acute coronary syndrome, and heart failure254. As 671 

prognostic biomarkers, circulating miR-132, miR-140-3p, and miR-210 were validated as 672 

survival predictors in CAD on 1112 individuals using a multivariate model255.  673 

The detection of various lncRNAs in the bloodstream suggests that they are either 674 

protected from RNase-mediated degradation, similar to miRNAs or that they originate 675 

from a plentiful source with a continuous release. Two circulating lncRNAs, ZFAS1 and 676 
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lCDR1AS, have recently been identified as independent predictors of myocardial 677 

infarction256. However, the precise origins and mechanisms linking these lncRNAs to 678 

myocardial infarction remain uncertain, as they were derived from whole blood256. 679 

Conversely, decreased levels of the lncRNA HOTAIR were observed in the plasma of 680 

myocardial infarction patients and were described to be cardioprotective through 681 

interaction with miR-1257. 682 

CircRNAs are present in abundance in bodily fluids such as blood, urine, and 683 

extracellular vesicles. These molecules have high stability and exhibit differential 684 

expression patterns in response to stress stimuli258. The circRNA MICRA, also known as 685 

circ-ZNF609, was found to be significantly reduced in the blood of individuals who have 686 

experienced myocardial infarction and serves as a promising prognostic biomarker for left 687 

ventricular dysfunction following myocardial infarction259,260. Furthermore, circRNA 688 

microarray analysis of PBMCs from patients with CAD has revealed 689 

hsa_circRNA_0001879 and hsa_circRNA_0004104 as potential diagnostic biomarkers 690 

for this condition261. Besides the lncRNAs and circRNAs mentioned above, additional 691 

transcripts have been suggested as potential circulating biomarkers in CVD262,263. The 692 

testing of lncRNAs and circRNAs as biomarkers in CVD is still at an early stage, although 693 

their above-mentioned dysregulation points toward potential usefulness in the near future, 694 

as it was recently reviewed264,265. A large proportion of the findings that suggest lncRNAs 695 

and circRNAs may serve as biomarkers for CVD are based on studies that involve limited 696 

numbers of participants and therefore require independent validation in larger studies. 697 

 698 

[H2] ncRNAs biomarkers in neurodegenerative diseases 699 

As obtaining nervous tissue from living individuals can be challenging, body fluids are 700 

often used as the most reliable source of ncRNAs. Several studies investigated the use 701 

of circulating small RNAs as Alzheimer disease biomarkers, tested either in cerebrospinal 702 

fluid (CSF), serum, or plasma, and derived extracellular vesicles. Serum miRNA 703 

signatures to differentiate frontotemporal lobar degeneration266 or other forms of 704 

dementia267 and Alzheimer disease were proposed. The neuronal-released miR-181a-5p 705 

was proposed as a circulating prognostic biomarker for ALS268. In this study, the authors 706 
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performed longitudinal monitoring of miR-181 in 252 patients subdivided into discovery 707 

and validation cohorts, and the potential of plasma miR-181 in predicting patients’ death 708 

risk was assessed.  709 

A panel of lncRNAs, quantified in PBMCs, was proposed as a diagnostic biomarker 710 

for multiple sclerosis269. Two of these lncRNAs, NRON and TUG1, were validated in an 711 

independent cohort. As for discrimination of multiple sclerosis subtypes, both CSF- and 712 

blood-circulating miRNAs have been investigated. Specifically, high levels of CSF miR-713 

181c were associated with conversion from clinically isolated syndrome to relapsing-714 

remitting (recovering) multiple sclerosis270. Serum miR-191-5p and miR-128-3p were 715 

associated with progressive forms (no recovery) of multiple sclerosis271. 716 

A total of 4,060 circRNAs with differential expression levels were identified in PBMCs 717 

derived from patients diagnosed with Alzheimer disease272. In silico analysis showed that 718 

the top 10 dysregulated circRNAs were strongly associated with various risk factors of 719 

AD, including inflammation, metabolism, and immune responses. These findings suggest 720 

that these circRNAs might play a potential role in the diagnosis of AD272. As another 721 

example, high expression levels of three circRNAs, circFUNDC1, circPDS5B, and 722 

circCDC14A, were found in patients with acute ischemic stroke (AIS) compared with 723 

healthy controls273. The elevated expression levels of these circRNAs were found to be 724 

positively correlated with infarct volume. These findings suggest that the three circRNAs 725 

may serve as potential biomarkers for the diagnosis of AIS273. 726 

 727 

[H1] Non-coding RNA therapeutics 728 

The use of RNA-based therapies has emerged as a promising treatment approach for 729 

human diseases and vaccine development. Certain endogenous ncRNAs can regulate 730 

the expression of genes involved in human diseases, and their dysregulated expression 731 

can contribute to the onset of disease, highlighting the potential of these ncRNAs as 732 

targets for drug development. ncRNAs play a dual role in cancer as either oncogenes or 733 

tumour suppressors, leading to the abnormal inhibition or degradation of their target 734 

mRNAs, and as a result, they serve as both direct therapeutic targets and potential 735 

therapeutic candidates for cancer treatment. In this respect, the utilization of miRNA-736 
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based therapeutics offers dual advantages. Firstly, as natural molecules found within 737 

human cells, miRNAs possess pre-existing mechanisms for their processing and 738 

downstream target selection, in contrast to artificial chemotherapy compounds or 739 

Antisense Oligonucleotides (ASOs). Secondly, miRNAs target multiple genes within a 740 

single pathway, leading to a more comprehensive and specific response. Several recent 741 

reviews have extensively discussed a range of approaches to modulate the therapeutic 742 

potential of ncRNAs, including the use of siRNAs, ASOs, shRNAs, anti-miRNAs, miRNA 743 

mimics, miRNA sponges, therapeutic circRNAs, and CRISPR-Cas9-based gene 744 

editing52,274-278. Currently, several ongoing clinical trials investigate the specific targeting 745 

of miRNAs for therapeutic purposes (Table 2); it is expected that similar clinical trials for 746 

lncRNAs and circRNAs will begin in the near future. 747 

 748 

[H2] Approaches of non-coding RNA therapeutics  749 

Currently, two main approaches exist for ncRNA-based therapeutic interventions, 750 

depending on the desired molecular outcome. The first is ncRNA antagonism, which 751 

involves inhibiting or repressing the expression or function of target ncRNA transcripts, 752 

often achieved by antisense RNAs. The second approach, known as ncRNA replacement 753 

therapy, aims to restore the expression or function of the target ncRNA and mostly 754 

involves the introduction of small RNAs. 755 

One example of the former approach is Remlarsen (MRG-201), a molecule designed 756 

to mimic the activity of miR-29, which was shown to reduce the expression of proteins 757 

involved in skin fibrosis279. MRG-201 was investigated in a phase 2, double-blind, 758 

placebo-controlled study (NCT03601052) to explore the efficacy, safety and tolerability of 759 

the drug following intradermal injection in individuals with a history of scar fibrosis 760 

(keloids). Furthermore, based on the reports that MRG-201 reduced fibrosis in animal 761 

models, a peptide-conjugated MRG-229 mimic was developed as a potential therapy in 762 

humans with idiopathic pulmonary fibrosis280. After detailed anti-fibrotic activity tested in 763 

multiple models, including TGF-β1-treated human lung fibroblasts (NHLFs) and human 764 

precision-cut lung slices (hPCLS), in vivo bleomycin studies and toxicology in rats and 765 

non-human primates, the outcomes supports further clinical development280. 766 
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A recent example of directly targeting ncRNA transcripts is a phase 1 randomized, 767 

double-blind, placebo-controlled study to assess the safety, pharmacokinetics, and 768 

pharmacodynamic properties of CDR132L, an antisense oligonucleotide-based inhibitor 769 

of miR-132, in patients with stable heart failure of ischaemic origin (NCT04045405). This 770 

trial described the linear plasma pharmacokinetics of miR-132, with no signs of 771 

accumulation, and was associated with cardiac functional improvements281. 772 

Additional developments in ncRNA-related therapeutics are of particular interest. A 773 

new therapeutic option is to target the downstream pathways of master regulator ncRNAs, 774 

including their target coding genes. As an example, the miR-15a/16-1 cluster is an 775 

essential player in CLL pathogenesis by targeting key anti-apoptotic proteins, BCL2 and 776 

MCL1282. When this cluster is downregulated or deleted, as in CLL, the downstream 777 

coding genes are upregulated, and the malignant cells lose anti-apoptotic potential and 778 

survive for longer periods. This mechanism had made CLL a deadly disease, until the 779 

development of Venetoclax (ABT199), a BCL-2 homology 3 (BH3) mimetic that 780 

specifically inhibits Bcl-2. Its use has fundamentally changed the natural history of the 781 

disease. Today, the therapeutic combination of Venetoclax and inhibitors of Bruton 782 

tyrosine kinase (such as Ibrutinib) increase progression-free survival and overall survival 783 

rates at 24 months to 95% and 98%, respectively283. As the downregulation of miR-15a/16 784 

cluster is frequent also in other human cancers284, the identification of patients with 785 

genomic deletions or mutations and/or with reduced expression of miR-15a/16 can 786 

identify patients who might respond well to Venetoclax or other novel BH3 mimetics.  787 

Due to different mechanisms of action, a specific microRNA can be considered either 788 

a drug or a drug target in different pathologic conditions. For example, miR-16 was 789 

discovered as a tumour suppressor miRNA and therefore restoration by a miR-16 mimetic 790 

constitutes a suitable therapeutic strategy in cancers where this miRNA has reduced 791 

expression. For example, the safety and activity of miR-16-loaded minicells in patients 792 

with recurrent malignant pleural mesothelioma showed an acceptable safety profile and 793 

early signs of activity285. By contrast, recent studies showed that endothelium-targeted 794 

deletion of the miR-15a/16-1 cluster ameliorates blood-brain barrier dysfunction in 795 

ischemic stroke286 and poststroke angiogenesis and improves long-term neurological 796 

recovery287. In this setting, the use of anti-miR-16 agents can result in adequate 797 
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therapeutic progress. Another promising therapeutic target is miR-21, which, besides its 798 

relevance to other diseases, has recently been demonstrated to be upregulated in 799 

pulmonary macrophages of both patients with COVID-19 and mice exhibiting acute 800 

inflammatory lung injury. The inhibition of miR-21 (using RCS-21) reversed the 801 

pathological activation of the macrophages and prevented pulmonary dysfunction and 802 

fibrosis after acute lung damage in the mouse model288. The development of small-803 

molecule inhibitors (SMIs) of miRNAs, which directly bind and inhibit the activity of an 804 

oncogenic or disease-causing miRNA (Box 1), has important advantages over the use of 805 

oligonucleotides, such as superior metabolic stability, solubility and bioavailability276,289-806 

291. By use of small molecule inhibitors [G], effective inhibition of oncomiRs (such as miR-807 

10b), as well as the upregulation of some important tumour suppressor targets (such as 808 

PTEN) has been achieved in pre-clinical studies292. In addition, two small molecules 809 

targeting specifically the triple-helical element for nuclear expression in Malat1 RNA, but 810 

not other similar structures present in the lncRNA Neat1, were identified by high-811 

throughput screening. The compounds significantly reduced Malat1 levels and activation 812 

of its downstream genes and induced the phenotypic attenuation of mammary gland 813 

organoids branching293. This approach has great therapeutic potential as it can be 814 

developed against small RNAs with very similar structures (as miR-21 and miR-10b), as 815 

well as any large RNA that has a known secondary structure and that is involved in any 816 

non-cancer disease including infectious diseases. An example of a potentially targetable 817 

RNA is the genome of SARS-CoV-2, which is the largest single-stranded RNA virus 818 

known to infect humans294. 819 

 820 

[H2] Challenges of non-coding RNA therapeutics  821 

Although ncRNAs have demonstrated therapeutic potential in vitro and in vivo, their 822 

limited bioavailability in vivo presents a major challenge to their clinical translation275. To 823 

overcome this obstacle, advanced drug delivery strategies are urgently required. To 824 

address the problems of a short half-life, off-target effects, and low transfection efficiency 825 

associated with RNA delivery, various ncRNA carriers and systems have been proposed 826 

and extensively investigated, including several types of nanoparticles, ncRNA 827 
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modification, and the oncolytic adenovirus strategy. These strategies represent promising 828 

approaches to enhance the delivery and efficacy of ncRNA-based therapies in vivo275.  829 

In parallel to improving delivery systems, challenges regarding the safety of ncRNA 830 

therapies need to be addressed. Despite ongoing clinical trials evaluating miRNA 831 

therapeutics for the treatment of human diseases, immune-related side effects still 832 

present a significant challenge295. To illustrate, a phase I clinical study involving MRX34, 833 

a liposomal miR-34a mimic, was prematurely terminated due to severe immune-related 834 

side effects that resulted in the unfortunate deaths of four patients296. However, there is 835 

still uncertainty regarding the specific cause of the clinical effects (including both toxicity 836 

and anti-tumor activity) observed in MRX34. Serious adverse events (SAEs) attributed to 837 

the treatment were predominantly observed later in the treatment cycle, occurring after 838 

the completion of daily MRX34 infusions. These SAEs included sepsis, hypoxia, cytokine 839 

release syndrome, and hepatic failure, which collectively suggest a pattern indicative of 840 

immune-mediated toxicity296. It is unclear whether these effects are attributable to the 841 

targeted gene-suppressing activity of the miR-34a nucleotide, a non-specific 842 

inflammatory response triggered by the dsRNA present in the MRX34 formulation, or 843 

possibly another underlying mechanism296. Considering the administration of 844 

dexamethasone pre-medication and the absence of similar SAEs associated with the 845 

same liposomal carrier used for a different investigational oligonucleotide drug, it is not 846 

likely that the severe toxicities observed in MRX34 were caused by the liposome 847 

carrier297,298. Moreover, the immune-related toxicities observed, along with the 848 

unconventional response patterns occasionally seen with other immune-activating agents 849 

such as CTLA-4 and PD-1/L1 immune checkpoint inhibitors, indicate an immune-850 

mediated mechanism underlying the clinical effects of MRX34299,300. 851 

 852 

[H1] Conclusions and outlook  853 

Recent advancements in comprehensive functional genomics have improved our 854 

understanding of the mechanism of action of ncRNAs on fundamental pathways related 855 

to human diseases, thereby enhancing our knowledge of the clinical manifestations and 856 

natural history of human diseases including cancer. However, understanding the full 857 
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range of ncRNA functions in human diseases still necessitates extensive investigation 858 

and clarification. For example, the amount of ncRNA exploration in infectious diseases 859 

could be widely expanded and such knowledge be used to prevent (through innovative 860 

biomarkers or vaccines) or control (through new therapeutics) future pandemics. This 861 

review has exclusively focused on the ncRNAs that have garnered the most attention in 862 

the literature. It is important to recognize that many other ncRNA types were not 863 

addressed here and therefore the impact of the entire ncRNA landscape in human 864 

diseases is even broader. Conducting large-scale expression screens and clinically 865 

evaluating ncRNAs can aid in identifying new non-coding transcripts that have a role in 866 

human diseases, potentially serving as therapeutic targets or biomarkers. 867 

An essential question is: where is the field heading in the near future? We 868 

anticipate at least three major areas of development. First, we need to catalog and 869 

annotate all ncRNAs from each human cell type and body fluid in populations of millions 870 

of individuals from different races and ages, and possibly at the single-cell level. We are 871 

witnessing the start of such a huge and beneficial effort301. From a technological point of 872 

view, ncRNA quantification methods and data analysis methods are already available, so 873 

the bottleneck for this goal is more related to coordination and funding rather than 874 

technology availability. Such a catalog will be essential for understanding new 875 

mechanisms of diseases and even more so for biomarker development. Second, there is 876 

a need to advance proteomics methodologies capable of accurately and consistently 877 

identifying micropeptides ranging from 10–20 amino acids in length. These extremely 878 

short peptides originated from ncRNAs could be in a far greater number than what is 879 

currently known thus holding a more extensive biological relevance than previously 880 

assumed. If this is the case, then we will witness another major transformation in the 881 

ncRNA paradigm that will offer the scientific community an additional large category of 882 

‘micro’ molecules to examine in-depth, carrying relevant translational implications. 883 

Another pivotal potential advancement will be the development of secure and effective 884 

ncRNA therapeutics. A revolutionary therapeutic breakthrough on par with the targeted 885 

efficacy of Gleevec or the immunotherapeutic impact of anti-PD1/PD-L1 drugs could 886 

substantially propel the field forward. One promising avenue in this domain involves 887 
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harnessing artificial intelligence to facilitate high-throughput development and 888 

investigation of small molecules that bind to coding and non-coding RNAs.  889 

  890 
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Table 1. Representative examples of clinical trials investigating ncRNA biomarkers in cancer, 1887 
cardiovascular disease, infectious diseases and neurogenerative disorders. For each miRNA, example 1888 
trials were chosen based on a high number of study participants. COPD: Chronic Obstructive Pulmonary 1889 
Disease. 1890 

NCT Number Conditions ncRNA n= Scope of the study 

Cancer 

NCT02618538 Breast cancer miRNAs 26,600 Investigating whether circulating miRNAs are significantly altered in the plasma 
of patients with cancer compared to matched healthy controls. 

NCT05633342 Various cancer types miRNAs 15,000 Characterizing intra-cellular multi-omic profiles of cancer and adjacent healthy 
tissues to aid the selection of circulating cancer biomarkers. 

NCT02338167 Breast cancer miRNAs 13,500 Discovery of biomarkers that predict progression free survival of patients with 
breast cancer. Biomarkers include gene expression profiling of the primary 
tumor and the corresponding metastases, somatic mutations, germline genetic 
variation, epigenetic changes and miRNA variation. 

NCT03830619 Lung cancer lncRNAs 1,000 Analysis of the sensitivity and specificity of serum exosome ncRNA as a 
biomarker for the diagnosis of lung cancer. 

NCT05397548 Gastric cancer lncRNA- 
GC1 

700 Investigating whether circulating, exosomal lncRNA-GC1 can be used to monitor 
gastric cancer. 

NCT05647941 Gastric cancer lncRNA- 
GC1 

700 Investigating whether lncRNA-GC1 can serve as a non-invasive biomarker for 
monitoring the neo-adjuvant chemotherapy response to personalized medicine 
for gastric cancer. 

NCT04584996 Pancreatic cancer, 
biliary tract cancer 

circRNAs 186 Defining the circRNA expression profile of pancreatic ductal adenocarcinoma 
(PDAC) tissues compared to controls, in an attempt to identify circRNA PDAC 
biomarkers. 

NCT04464122 Neuroendocrine 
tumors 

circRNAs 60 Identifying new circRNA biomarkers from tumor-educated platelets (TEPs) for 
the diagnosis and evaluation of treatment response in pulmonary and gastro-
entero-pancreatic neuroendocrine neoplasms. 

NCT05771337 Breast cancer Circ-
ELP3 

80 Investigating the diagnostic value of hsa_circ_0001785 (Circ-ELP3) and 
hsa_circ_100219 (Circ-FAF1) in serum samples of patients with breast cancer . 

Cardiovascular Diseases 

NCT05766046 Lung cancer, 
Cardiovascular 
diseases, COPD 

miRNAs 7,324 Developing a diagnostic test analyzing miRNAs from blood of patients with 
cardiovascular diseases and lung cancer. 

NCT03049254 Various 
cardiovascular 
conditions 

miRNAs 6,000 Investigating blood-based biomarkers that predict disease onset, disease 
progression, and the likelihood of arrhythmia. 

NCT04189029 Heart failure miRNAs, 
lncRNAs 

2,620 A prospective multicenter study to decipher phenotypic variability within patients 
with heart failure and preserved left ventricular ejection fraction. 

NCT03170830 Acute Myocardial 
Infarction 

circRNA-
Uck2 

178 Evaluating the diagnostic value of circRNA-Uck2 in acute myocardial infarction. 

NCT02297776 Cardiac Arrest miRNA, 
circRNA 

160 Evaluating circRNA and miRNA plasma biomarkers for their ability to estimate 
the extent of brain injury after cardiac arrest. 

NCT03076580 Cardiomyopathies miRNAs, 
lncRNAs 

2,000 A multi-omics study of cardiomyopathies patients, aiming to determine genetic 
risk factors and serial biomarkers of cardiomyopathies in diagnosis and 
prognosis. 

NCT03225183 Cardiovascular 
Disease, 
Hypertension 

lncRNAs 1,700 Characterizing the relationship between of lncRNAs and cardiovascular 
diseases and risk factors. 

Neurological Diseases 

NCT05418023 Autism spectrum 
disorder, 
developmental delay 

miRNAs 6,604 Validating a salivary miRNA diagnostic test for autism spectrum disorder. 

NCT04961450 Amyotrophic Lateral 
Sclerosis, 
Frontotemporal 
Dementia, Motor 
Neuron Disease 

miRNAs 2,500 Investigating miRNA biomarkers in blood, saliva, feces, cerebrospinal fluid, 
muscle tissue and nerve tissue of patients with motor neuron disease and 
frontotemporal dementia. 

NCT04509271 Alzheimer disease miRNAs 1,300 Investigating miRNA biomarkers for the diagnosis of mild cognitive impairment 
due to Alzheimer disease. 

NCT03152630 Dementia lncRNA 600 Investigating early and prognosis diagnosis of vascular dementia. 

NCT04807738 Multiple sclerosis lncRNA 110 Studying the effect of virtual reality on upper limb function and postural stability 
in people with multiple sclerosis; lncRNA biomarkers were analyzed to assess 
the biological effect of rehabilitation intervention. 

NCT05341453 Spinal muscular 
atrophy 

lncRNA 16 A randomized controlled trial is aimed to discover Studying the effect of 
physiotherapy and hippotherapy effect and efficacy on children with SMA, with 
efficacy assessed in part using measurement of lncRNA in blood. 

NCT05098340 Acute Ischemic 
Stroke 

circRNAs 500 Analyzing the expression pattern of circRNAs in patients with acute ischemic 
stroke and healthy controls, to identify detection and prognosis biomarkers. 

NCT04175691 Acute Stroke, 
Ischemic Stroke 

miRNAs, 
lncRNAs, 
circRNAs 

500 Analyzing the expression pattern of ncRNAs in patients with acute ischemic 
stroke and healthy controls, to identify detection and prognosis biomarkers. 
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NCT04230785 Acute and Ischemic 
Stroke, Endovascular 
Treatment 

ncRNAs 300 Analyzing the expression pattern of ncRNAs in patients with acute ischemic 
stroke before and/or after endovascular treatment. 

Infectious Diseases and Sepsis 

NCT01780298 COPD miRNAs 739 Investigating biomarkers for the differentiation of participants with COPD and 
three matched control groups: one of non-smoking subjects (never smoked), 
one of ex-smokers and one of current smokers. 

NCT03280576 Sepsis miRNAs 556 Analyzing the expression levels of miRNAs isolated from plasma, circulating 
exosomes and blood cells by next-generation sequencing to characterize 
epigenetic influences on progranulin plasma levels. 

NCT05398952 Post viral fatigue, 
viral myocarditis 

miRNAs, 
lncRNAs, 
circRNAs 

2,000 Examining circulating ncRNA biomarkers in patients with post-COVID-19 
persisting symptoms to identify new diagnostic and prognostic biomarkers. 
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Table 2. Examples of clinical trials investigating miRNA-targeting therapies. 1893 

Related disease Study ID Treatment Target(s) Scope of the study Phase 

Cutaneous T-cell 
Lymphoma, 
Mycosis 
Fungoides (CTCL, 
MF) 

NCT03837457 A synthetic locked 
nucleic acid-modified 
oligonucleotide 
inhibitor of miR-155 
(MRG-106) 

miR-155 Evaluation of MRG-106 
impact on skin lesion 
severity, disease 
symptoms, quality of 
life, and the duration of 
stable or improved 
disease status, while 
ensuring no evidence of 
disease progression. 

2 

Cutaneous T-cell 
Lymphoma, 
Mycosis 
Fungoides (CTCL, 
MF) 

NCT03713320 A synthetic locked 
nucleic acid-modified 
oligonucleotide 
inhibitor of miR-155 
(MRG-106) 

miR-155 Comparison of the 
effects of MRG-106 to 
vorinostat, a drug that 
has been approved for 
the treatment of CTCL. 

2 

Liver Cancer, 

Small Cell Lung 
Cancer, 
Lymphoma, 

Melanoma, 

Multiple Myeloma, 

Renal Cell 
Carcinoma, 

Non-Small Cell 
Lung Cancer 

NCT01829971 A liposomal miR-34a 
mimic (MRX34) 

Multiple 
oncogenic 
genes (such 
as, MEK1, 
MYC, 
PDGFR-α, 
CDK4/6, 
BCL2, WNT 
1/3, 
NOTCH1, 
CD44) 

Evaluation of MRX34 
safety on patients with 
primary liver cancer, 
selected solid tumors, 
and hematologic 
malignancies. 

1 

Malignant Pleural 
Mesothelioma, 

Non-Small Cell 
Lung Cancer 

NCT02369198 Targeted minicells 
containing a miR-16 
mimic (TargomiRs) 

EGFR-
expressing 
cancer cells 
with an anti-
EGFR 
bispecific 
antibody 

Evaluating the safety, 
optimal dosing, and 
activity of TargomiRs in 
patients with malignant 
pleural mesothelioma 

1 

Colorectal Cancer NCT03362684 Cetuximab, FOLFOX miR-31-3p 
and miR-31-
5p 

Identifying the 
prognostic role of miR-
31-3p and miR-31-5p in 
stage III colon cancer, 
specifically their 
potential as indicators 
of patient outcomes in 
the context of anti-
EGFR therapy. 

3 

Coronary Heart 
Disease, 

Acute Myocardial 
Infarction 

NCT02850627 Tongguan capsule Global 
regulation of 
miRNA levels 

Assessing the impact of 
Tongguan capsule on 
miRNA profiles in 
patients. 

4 

Preclinical 
Alzheimer 
Disease 

NCT02045056 Gemfibrozil miR-107 Examining the safety 
and efficacy of 
Gemfibrozil in regulating 
miR-107 levels as a 
potential strategy for 

Early 1 



   

 

   

 

59 

Alzheimer Disease 
prevention. 

Organ Protection NCT05503043 Lidocaine MiR-135a, 
Rock2, Add1 

Investigating the impact 
of intravenous lidocaine 
on serum miR-135a 
levels and its 
downstream proteins 
(Rock2 and Add1) in 
patients. 

NA 

Alport Syndrome NCT03373786 RG-012 (lademirsen) miR-21  Assessing the impact 
of RG-012 on renal 
miR-21. 

1 

Keloid NCT03601052 An oligonucleotide 
mimic of miR-29b 
(MRG-
201/Remlarsen) 

Multiple  

multiple 
factors 
involved in 
the fibrotic 
response (eg, 
collagen) 

Assessing the efficacy 
of Remlarsen in 
preventing or reducing 
Keloid formation 

2 

Endometriosis NCT05331053 Atorvastatin Global 
regulation of 
miRNA levels 

Investigating the role of 
miRNAs (let7-a, let7-b, 
let7-g, miR-98, miR-
590) in driving elevated 
LOX-1 receptor 
expression and function 
in endometriosis. 

4 
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Figure legends 1896 

 1897 

Figure 1. The classic and non-classic functions of miRNAs. | a) The classic function 1898 

of miRNAs is to target the 3’ UTR of sequence-specific mRNAs, causing mRNA 1899 

degradation or translational repression, as illustrated for miR34a targeting PDL1 1900 

transcripts. b) Certain miRNAs can target the 5’ UTR or coding sequence (CDS) of their 1901 

target mRNA, resulting in either mRNA degradation, translational repression, or even 1902 

increased translation of their target. For example, miR-24 can bind both to the 3’ and 5’ 1903 

UTR of Jab1 mRNA causing its posttranscriptional inhibition, whereas miR-10a binds to 1904 

the 5’ UTR of ribosomal-encoding mRNAs, such as Rps16, and enhances their 1905 

translation. c) miRNAs can act as mediators of intracellular communication by being 1906 

secreted via extracellular vesicles (EVs) and acting as hormones39. On immune cells, 1907 

miRNAs can directly target Toll-like receptor (TLR) proteins by acting as their ligands, in 1908 

turn activating TLR signaling pathways and inducing an immune response38,40 41. For 1909 

example, let-7i can target TLR4, whereas miR-21 and miR-29a can target TLR8. d) Some 1910 

miRNAs can also interact with non-Ago proteins, so-called miRNA-binding proteins 1911 

(miRBPs), which can work in cooperation or competition with Ago, thereby enhancing or 1912 

silencing miRNA function on its target molecule. Examples include miR-1 and the 1913 

TNRC6B miRBP, and miR-21 and PDCD4 miRBP, respectively. miRNA can also be 1914 

transported between Ago2 and miRBP; however this mechanism is less studied and not 1915 

currently well understood. e) Some pri-miRNAs encode regulatory peptides that can 1916 

influence the expression of the mature miRNA. 1917 

 1918 

Figure 2. The main functions of lncRNAs. | a) DNA interaction. lncRNAs can directly 1919 

bind to DNA, forming R-loops, or can have a role in chromatin regulation in a complex 1920 

with DNA-binding proteins. For instance, GADD45A can bind to the R loop formed by the 1921 

lncRNA TARID at the TCF21 promoter, triggering local DNA demethylation by recruiting 1922 

TET1 to the DNA59. SWINGN lncRNA, which is transcribed from an enhancer, modulates 1923 

the activation of GAS6 oncogene by binding to SWI/SNF tumor suppressor complex and 1924 

influences its ability to drive epigenetic activation of specific promoters60. Xist lncRNA, 1925 
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which is responsible for X chromosomal inactivation, binds to SAF-A chromatin-1926 

interacting protein and is thereby able to localize to sites on the X chromosome. Xist 1927 

directly binds to SHARP and the resulting complex recruits SMRT to these DNA regions 1928 

and recruits HDAC3 to the X chromosome or induces HDAC3 enzymatic activity, which 1929 

results in chromatin compaction and transcription silencing61. b) Various RNA 1930 

interactions. lncRNAs can interact with mRNAs and affect translation, RNA stability or 1931 

block miRNA binding sites and thereby inhibit the effect of miRNAs. For example, the 1932 

lncRNA GAS5 interacts with the translation initiation complex eIF4F, by directly binding 1933 

to eIF4E and decreasing the translation of c-Myc302. The TINCR–STAU1 complex seems 1934 

to mediate the stabilization of different mRNAs, such as KRT80303. PTB-AS substantially 1935 

increases PTBP1 mRNA levels by directly binding to its 3' UTR and blocking miRNA 1936 

binding sites304. c) Sponge activity by miRNA interaction. MALAT1 can act as a miRNA 1937 

sponge for miR-34c and thereby upregulate SATB2 expression and alleviate the 1938 

symptoms of osteoporosis in mice62. HOTAIR can sponge the tumor-suppressor miR-1939 

222-3p and thereby contribute to ovarian cancer progression63. d) Protein interactions. 1940 

lncRNAs can interact with proteins and act as their scaffolds or guides. For example, 1941 

NFAT1 kinases are scaffolded by the lncRNA NRON64, whereas HOTAIR specifically 1942 

binds to YBX1, and promotes YBX1 nuclear translocation64,65. e) Some lncRNAs can 1943 

harbor ‘coding’ activity and produce micropeptides. For example, LINC0065 lncRNA can 1944 

be translated to the CIP2a-BP micropeptide. 1945 

 1946 

Figure 3. The main functions of circRNAs. | a) CircRNAs have the potential to serve 1947 

as sponges for miRNAs, as demonstrated by circTDRD3, which harbors target sites for 1948 

miR-1231. b) CircRNAs can interact with specific mRNAs and regulate their stability 1949 

and/or translation. An example is circZNF609 interaction with CKAP5 mRNA. c) 1950 

CircRNAs can undergo translation and produce small peptides, as demonstrated by 1951 

circCDYL2 translation into Cdyl2-60aa small peptide, which is approximately 7 kDa. d) 1952 

CircRNAs that contain motifs capable of binding to RNA-binding proteins possess the 1953 

capacity to act as decoys or sponges for proteins, consequently modulating their activity. 1954 

CircRNAs harboring motifs that facilitate binding between an enzyme and its substrate 1955 

can act as scaffolds, enabling the co-localization of the two molecules and optimizing 1956 
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reaction kinetics. CircRNAs can interact with gene promoters, recruit TET1 demethylase, 1957 

and initiate significant demethylation of CpG islands within the DNA. Additionally, 1958 

circRNAs can bind to U1 snRNP and subsequently engage with the RNA polymerase II 1959 

transcription complex, enhancing protein expression. 1960 

 1961 

Figure 4. Examples of the different mechanisms of ncRNAs in human diseases. | a) 1962 

H19 lncRNA acts as a miRNA sponge in breast cancer tissue and thereby reduces the 1963 

level of miR200a and miR200b in tissues and circulation, resulting in ARF protein 1964 

accumulation that facilitates epithelial-mesenchymal transition (EMT). b) Dworf lncRNA 1965 

has a heart-specific expression and is down-regulated in ischemic failing human hearts. 1966 

Expression changes in DWORF small peptide, which is encoded by Dworf lncRNA and 1967 

acts by regulating the Sarcoendoplasmic Reticulum Calcium ATPase (SERCA) calcium 1968 

pump in myocytes, have a potential role in heart failure. c) Cdr1as circRNA contains 73 1969 

binding sites for let-7 and thereby acts as a miRNA sponge. As a consequence, reduced 1970 

let-7 levels cause decreased UBE2A and increased SNCA protein levels that contribute 1971 

to amyloid beta plaque accumulation and thereby to Alzheimer Disease. d) SARS-CoV-1972 

2 integrates and increases miR-2392 expression, promoting COVID-19 disease 1973 

progression. 1974 

 1975 

Figure 5. NcRNAs are important biomarkers and therapeutic targets. 1976 

A. Various ncRNA species can be detected and analyzed in standard biopsy samples 1977 

and liquid biopsy specimens through various techniques including quantitative PCR 1978 

(qPCR), droplet digital PCR (ddPCR), RNA Sequencing or in situ Hybridization. All types 1979 

of ncRNA species can be isolated from blood cells, serum, plasma, extracellular vesicles, 1980 

urine, saliva, breast milk, and cerebrospinal fluid among others. They have the potential 1981 

to serve as diagnostic and prognostic biomarkers as well as to help monitor the diseases 1982 

treatment and outcomes. B. Representative examples of the two main types of ncRNA 1983 

therapies c investigated in pre-clinical and clinical stages. In response to cardiomyocyte 1984 

stress, miR-132 is upregulated in the cardiac tissue of patients with cardiac stress or 1985 

injury. Intravenous infusion of CDR132L containing antisense miR-132 is under clinical 1986 
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investigation to improve cardiac function. MesomiR 1 is a miR-16 mimic encapsulated in 1987 

minicells that aim to restore the level of miR-16 tumour suppressor in cancer cells and is 1988 

under clinical investigation to treat malignant pleural mesothelioma. 1989 
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Box 1. miR-155 regulation of the immune system and therapeutic use. 1991 

The involvement of ncRNAs in the various facets of immune function is an extensively 1992 

studied area305-307. Various well-characterized miRNAs, such as miR-146, miR-150 and 1993 

miR-155, have been reported to be involved in regulating lymphocyte, monocyte and 1994 

macrophage phenotypes, respectively308. From a clinical perspective, the most advanced 1995 

therapeutic applications are related to miR-155, which has important roles in T and B cell 1996 

proliferation and cytokine production309-312. Overexpression of miR-155 in activated T 1997 

helper (Th) cells can participate in Th2-mediated airway inflammation through targeting 1998 

of sphingosine receptor S1PR1313. In addition, miR-155 is required for optimal 1999 

proliferation of regulatory T cells (Treg) in vitro314, which suggests an important role in 2000 

regulating T-cell expansion. In vivo studies also showed that miR-155 acts in regulating 2001 

interferon (IFN) responsiveness and the CD8+ T cell response against pathogens311. 2002 

Furthermore, overexpression of miR-155 has been shown to enhance cytokine 2003 

responsiveness, engraftment, cytokine production and anti-tumour function310. Consistent 2004 

with these findings, overexpression of miR-155 directly suppresses SHIP1 levels, while 2005 

enhancing Polycomb repressor complex 2 (PRC2) activity by promoting the expression 2006 

of the PRC2-associated factor PHF19310.  2007 

miR-155 has a central role in regulating serine/threonine kinase (Akt)-dependent 2008 

M1/M2 activation of macrophages315. In addition, miR-155 overexpression enabled 2009 

successful reprogramming of tumour-associated macrophages (TAMs) into pro-2010 

inflammatory M1 macrophages316. Notably, miR-155 may contribute to the development 2011 

of resistance to chemotherapy, as evidenced by its role in the cross-talk between 2012 

neuroblastoma cells and human monocytes in chemoresistance, involving cell-to-cell 2013 

communications with malignant cells via an exosomic miR-21/TLR8-NF-кB/exosomic 2014 

miR-155/TERF1 signaling pathway317. Clinical applications related to suppressing miR-2015 

155 for cancer therapy targeted to the TME were developed for DLBCL318 using the 2016 

attachment of nucleic acid antimiRs to a peptide with a low pH-induced transmembrane 2017 

structure (pHLIP). Further combinatorial therapeutics of anti-miR-155 with chemotherapy 2018 

for the treatment of lung cancers was reported using the non-toxic DOPC (1,2-dioleoyl-2019 

sn-glycero-3-phosphocholine) Food and Drug Administration (FDA)-approved 2020 



   

 

   

 

65 

nanoliposomes319. Cobomarsen (also known as MRG-106) is a locked nuclei acid (LNA)-2021 

based inhibitor of miR-155, used for the treatment of cutaneous T-cell lymphoma (CTCL), 2022 

mycosis fungoides (MF) subtype. Promisingly, it is likely that this drug could be 2023 

repurposed for any other non-cancer type of disease in which miR-155 has abnormally 2024 

high expression, and is pathogenetically involved, such as autoimmune inflammatory 2025 

disorders320. A phase I trial demonstrated that Cobomarsen was well-tolerated, had 2026 

clinical activity and had the potential to improve patients’ quality of life301. 2027 

  2028 
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Glossary terms 2029 

Small peptides (sPEP)  2030 

Small peptides, also called micropeptides, are polypeptides that are encoded by small 2031 

open reading frames (sORFs) and consist of less than 100-150 amino acids, sometimes 2032 

translated from ncRNAs. 2033 

Non-Ago proteins 2034 

Argonaute (Ago) proteins are interactor partners of small ncRNAs, such as miRNAs and 2035 

siRNAs, which facilitate their target binding and thereby their effector mechanisms. It was 2036 

recently uncovered that miRNAs can interact with other, non-Ago proteins as well. 2037 

Sponge 2038 

RNA molecules such as circRNAs that can bind and sequester RNAs or proteins and 2039 

thereby inhibit their effects. 2040 

Ribosome profiling 2041 

A deep-sequencing-based method that reveals ribosome-associated mRNAs, thereby 2042 

predicting regions subjected to translation. 2043 

Small-molecule inhibitor (SMI) 2044 

Compounds smaller than 500 Da developed to target any portion of a target molecule 2045 

and to cause its inhibition.  2046 

Short open reading frame (sORF) 2047 

Also known as small ORF, these are 100 nucleotide-long putative protein-coding sites, 2048 

which were previously overlooked as non-relevant regions. 2049 

 2050 


