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Risorgimento, 2, Bologna, 40136, BO, Italy. enrico.malaguti@unibo.it

Michele Monaci
Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “Guglielmo Marconi”, Università di Bologna, Viale del
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In this paper, we study Adjustable Robust Optimization (ARO) problems with discrete uncertainty. Under a

very general modeling framework, we show that such two-stage robust problems can be exactly reformulated

as ARO problems with objective uncertainty only. This reformulation is valid with and without the fixed

recourse assumption and is not limited to continuous wait-and-see decision variables, unlike most of the

existing literature. Additionally, we extend an enumerative algorithm akin to a branch-and-cut scheme for

which we study the asymptotic convergence. We discuss how to apply the reformulation on two variants of

well known optimization problems: a Facility Location Problem in which uncertainty may affect the capacity

values and a Multiple Knapsack Problem with uncertain weights, and we report extensive computational

results demonstrating the effectiveness of the approach.
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1. Introduction

Classical optimization problems usually model a single-stage decision flow where every

decision must be taken here and now. In practice, however, every here-and-now decision is

a call for future wait-and-see decisions to be made, which will depend on the former and,

potentially, on future uncertain events which cannot be observed immediately.

In this paper, we consider an optimization problem of the form

min ccc⊤xxx+ddd⊤yyy (1)
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s.t.TTTxxx+HHHyyy≤ fff (2)

xxx∈X (3)

yyy ∈ Y (4)

000≤ yyy≤uuu (5)

where xxx denotes the vector of here-and-now decisions, yyy represents wait-and-see decisions

that can be taken after uncertainty reveals, and ccc,ddd,TTT ,HHH,fff and uuu are real vectors and

matrices of appropriate dimension. The objective function includes a cost for both here-

and-now and wait-and-see decisions; the corresponding variables are coupled by means of

linking constraints (2). Constraints (3) and (4) impose that xxx and yyy belong to some poly-

hedral set; these constraints may also include integrality requirements on some variables,

if any. As it happens in practical applications, we assume wait-and-see decisions to be

bounded, see, (5). In addition, we restrict our attention to the case in which X is bounded.

Finally, we assume that the deterministic problem is feasible.

Assumption 1. Problem (1)–(5) admits a feasible solution.

We consider problems in which uncertainty affects coefficients of matrixHHH. Let us denote

by Y (x̂xx,ĤHH) = {yyy ∈ Y : ĤHHyyy≤ fff −TTTx̂xx,000≤ yyy≤uuu} the set of feasible wait-and-see decisions for
a given here-and-now decision x̂xx∈X and random outcome ĤHH of HHH. Finally, let Q(•|HHH) be

an oracle which is able to foresee the actual future outcome ĤHH of HHH. Then, the goal is to

decide here-and-now decision xxx∗ such that

xxx∗ ∈ argmin
xxx∈X

{
ccc⊤xxx+Q

(
min

yyy∈Y (xxx,HHH)
ddd⊤yyy

∣∣∣∣HHH)} . (6)

We refer to this class of problems as adjustable problems so as to enlight the two-stage

nature of the decision flow. Two main approaches have been proposed in the scientific

literature to model the fact that the oracle Q is unknown in practice. On the one hand,

stochastic optimization assumes some probabilistic distribution knowledge about HHH and

replaces oracle Q(•|HHH) with E(•|HHH). An interested reader may refer to Birge and Lou-

veaux (2011), Prékopa (2013), and Shapiro et al. (2021) for more details on stochastic

optimization. On the other hand, robust optimization only assumes to know a subset of the

support of the density function of HHH, say H, and replaces Q(•|HHH) with max{• : ĤHH ∈H}.
This approach is also referred to as worst-case optimization as it decides xxx∗ in the least

advantageous outcome for HHH; see Soyster (1973), Ben-Tal and Nemirovski (1999), and

Bertsimas and Sim (2004) for more details.
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Related literature There is a wide literature on min-max and min-max-min problems with

continuous and discrete uncertainty sets, see, e.g., the recent surveys Buchheim and Kurtz

(2018) and Gorissen et al. (2015).

Already in the case of min-max optimization and objective discrete uncertainty, it has

been shown by Buchheim and Kurtz (2018) that the problem is NP -hard as soon as the

here-and-now decisions are binary and the uncertainty set contains exactly two scenarios.

Since min-max-min problems are a generalization of min-max optimization, this complexity

result trivially extends and several approaches have been designed to approximately or

exactly address the general min-max-min case.

Assuming that the convex hull of the uncertainty set is known, one considerably simplifies

the problem by replacing Ξ with conv(Ξ), leading to a relaxation of the original problem. In

such cases, typical approaches designed for continuous uncertainty sets may be employed.

In Ben-Tal et al. (2004), based on the consideration that min-max-min problems are

equivalently written as min-max problems over the set of general functions yyy : Ξ→ RnY
+ ,

referred to as decision rules, the authors proposed a conservative approximation for cases

in which the wait-and-see decisions are continuous by restricting such functions to be affine

decision rules (ADR) of the form yyy : ξξξ 7→ ȳyy +AAAξξξ. The authors show that ADRs lead to

tractable problems for cases with fixed recourses (i.e., with a known HHH and uncertain fff)

and continuous second-stage decisions. Unfortunately, this approach cannot be extended

to the case where the wait-and-see decisions are integer as it would imply that yyy(ξξξ) be

integer for all ξξξ ∈ conv(Ξ).

For the case where the second stage is mixed-integer, Bertsimas and Georghiou (2017)

have developed linearly parametrized binary decision rules which were shown to provide

high quality solutions. However, such an approach fails at guaranteeing optimality and

has been shown to lead to mixed-integer formulations whose size grows exponentially with

respect to the input data.

Finite adaptability was introduced in Bertsimas and Caramanis (2010) and constitutes

another major conservative approximation for general min-max-min problems. It consists

in selecting a fixed number of recourse decisions, sometimes referred to as contingency

plans, before the uncertainty reveals and to select, in the second-stage, one recourse decision

among the pre-selected plans. This approximation has been studied, e.g., in Hanasusanto
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et al. (2015), Postek and den Hertog (2016), Bertsimas and Dunning (2016), Subramanyam

et al. (2019), Romeijnders and Postek (2021) and Malaguti et al. (2022).

Regarding exact approaches, most of the literature addresses cases with right-hand

side uncertainty and continuous second stage or objective uncertainty. In the latter case,

Kämmerling and Kurtz (2020) introduced a branch-and-cut algorithm for the case where

the here-and-now decisions are all binary. The same restriction of objective uncertainty is

found in Arslan and Detienne (2022), where the authors proposed a deterministic refor-

mulation of the problem in case the uncertainty set is conv(Ξ) and all linking constraints

are linear and do not include continuous here-and-now variables. The resulting reformu-

lation is then solved by using a branch-and-price algorithm. The extension to linking

constraints defined by convex functions and possibly including continuous here-and-now

variables has been presented in Detienne et al. (2021). A column-and-constraint generation

algorithm was introduced in Zeng and Zhao (2012) for the case where the second stage is

continuous. Later, this approach was extended in Zhao and Zeng (2013) to address prob-

lems with mixed-integer wait-and-see decisions. Recently, Subramanyam (2022) considered

adjustable problems with binary uncertainty and introduced an exact method based on

a reformulation of the problem and Lagrangian relaxation, thus obtaining a problem in

which uncertainty appears in the objective function only. This paper explicitly addresses

and computationally evaluates the case where uncertainty affects the right-hand side coef-

ficients only. However, by using a suitable reformulation, this setting can be generalized to

the case where uncertainty affects the coefficients of the constraint matrix, i.e., the setting

of the present paper.

Paper contribution In this paper, we present an alternative exact approach for problems

where the wait-and-see decisions are mixed-integer and uncertainty affects the problem

constraints, and we provide the following main contributions:

• In Section 2, we introduce our modeling framework and discuss its generality. We

show that virtually any linearly-constrained Adjustable Robust Problem with discrete

uncertainty can fit our framework. Among others, our model includes problems with and

without the fixed recourse assumption, and allows for both mixed-integer first- and second-

stage decisions.

• In Section 3, we present our main theoretical results. We prove the general validity of a

non-trivial reformulation of ARO problems with discrete uncertainty as objective-uncertain

ARO problems. This reformulation is based on polyhedral results and Lagrangian duality.
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• In Section 4, we extend a recent algorithm (Kämmerling and Kurtz 2020) from the

ARO literature to the mixed-integer case while it was originally designed for objective-

uncertain problems with binary first-stage decisions only and continuous uncertainty set.

We also explicitly discuss the behaviour of the algorithm in case of ARO problems which

are infeasible (i.e., ∀x∈X,∃Ĥ ∈H such that Y (x, Ĥ) = ∅), or which do not have complete

recourse (i.e., ∃x̂∈X and ∃Ĥ ∈H such that Y (x̂, Ĥ) = ∅).
• In Section 5, we report computational results for the considered class of hard optimiza-

tion problems, showing that our approach is able to solve medium-size instances within a

reasonable computing time.

2. Problem modeling

In the following, we will denote by nX and nY the number of here-and-now and wait-and-see

decisions, respectively, and by mY the number of linking constraints (2).

2.1. Uncertainty model

Our modelling of uncertainty is based on the following assumption. We will show in the

next section that this assumption can be done without loss of generality.

Assumption 2. For all i = 1, ...,mY and all j = 1, ..., nY , let hij and h̄ij be two real

numbers such that hij ≤ h̄ij. The set H of possible outcomes for HHH is such that H⊆ {ĤHH :

(ĥij = hij ∨ ĥij = h̄ij), i= 1, ...,mY , j = 1, ..., nY }.

To ease the presentation, we introduce a binary set Ξ⊆ {0,1}mY ×nY used to encode the

combinatorial aspects of H as follows: for all ξξξ ∈ Ξ and any (i, j), ξij = 0 if ĥij = hij and

ξij = 1 if ĥij = h̄ij. For a given x̂xx∈X and ĤHH ∈H, with a small abuse of notation we denote

set Y (x̂xx,ĤHH) as Y (x̂xx, ξ̂ξξ) for an appropriate ξ̂ξξ ∈ Ξ. Using this notation, set Y (x̂xx, ξ̂ξξ) includes

all those elements fulfilling constraints (4), (5), and
nX∑
j=1

tij x̂j +

nY∑
j=1

(
hijyj +(h̄ij −hij) ξ̂ij yj

)
≤ fi i= 1, ...,mY (7)

Accordingly, the class of problems which we are addressing can be reformulated as fol-

lows:

min
xxx∈X

{
ccc⊤xxx+max

ξξξ∈Ξ
min

yyy∈Y (xxx,ξξξ)
ddd⊤yyy

}
. (8)

In the robust optimization terminology, matrix HHH is often called the recourse matrix. The

class of problems we consider in this paper can therefore be summarized as adjustable

robust problems with mixed-integer first and second stage, uncertain recourse matrix and

binary uncertainty.
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2.2. Expressiveness of our model

In this section, we show that Assumption 2 can be done without loss of generality. In

addition, we discuss how a large variety of uncertain problems can be cast in our framework

without introducing further assumptions.

More than two possible outcomes Assume that a generic coefficient, say hij, has more than

two possible outcomes. Let R > 2 be this number and denote by ĥ1
ij, ..., ĥ

R
ij the possible

values, sorted by increasing order. In the i-th constraint, we replace variable yj by R

additional variables y1ij, ..., y
R
ij , the r-th associated with an uncertain coefficient hr

ij having

hr
ij = 0 and h̄r

ij = ĥr
ij. In order to impose that exactly one value is selected by the uncertainty

for coefficient hij, the following constraint

R∑
r=1

ξrij = 1 (9)

has to be added to the definition of Ξ. Finally, the relationship between the original yj and

the additional yrij variables can be enforced by imposing the following constraints

yj = yrij r= 1, ...,R (10)

Constraints (10) can simply be added to the definition of set Y .

“≥”-inequalities and equalities In our definition of the problem, all linking constraints (2)

are assumed to be written in the ≤ form. Since we make no assumption on the sign of

coefficients of Ĥ, any ≥ inequality can be rewritten in ≤ form.

As to equations, we assume they are replaced by a pair of ≤ inequalities before the refor-

mulation is applied. Let i1 and i2 be the indices of the inequalities derived from a given

equation and notice that each variable yj has, in these constraints, the same coefficients

but with complementary signs: h̄i1j = −hi2j
and hi1j

= −h̄i2j. Hence, consistency in the

realization of the same parameter can be enforced by the following constraint

ξi1j + ξi2j = 1 (11)

More in general, our framework allows modelling of situations in which the realization of

a pair of coefficients of Ĥ is correlated; for example, if the first coefficient takes its smallest

value, then the second assumes its smallest value as well, and vice-versa. These situations

can be handled by adding suitable constraints to the definition of Ξ.
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Right-hand side uncertainty Though our uncertainty model assumes recourse matrix uncer-

tainty, it is clear that right-hand side uncertainty is comprised within our framework. In

other words, it can be used for modelling contexts with and without the fixed recourse

assumption. To see this, consider one constraint whose right-hand side is uncertain, i.e.,

assume that fi is replaced by f
i
+(f̄i−f

i
)ξ′i in (7) with f

i
≤ f̄i for some (unknown) binary

ξ′i. Then, clearly, adding one decision variable ynY +1 fixed to 1 which multiplies ξ′i turns

our problem in the desired form.

Objective uncertainty Finally, it is well known (see, e.g., Bertsimas and Sim (2004)) that

assuming full knowledge of the objective function is without loss of generality. Indeed,

uncertainty in vector ddd in (1) can be easily handled by introducing an additional (uncertain)

constraint that defines the objective function value. Overall, this shows that our modelling

approach defines a completely general setting.

3. Theoretical development

This section presents the main theoretical development of our work. We start by refor-

mulating problems of type (8) as adjustable robust problems with objective uncertainty;

then, we consider a relaxation introduced in Kämmerling and Kurtz (2020) for this class

of problems, extend to our setting an algorithm for the solution of the relaxation and dis-

cuss its computational complexity. Finally, we show how to deal with problems for which

feasibility is unknown. In Section 4, we will discuss how the relaxation can be embedded

in a branch-and-bound algorithm to close the optimality gap.

3.1. Reformulation

The reformulation introduced in this section is based on the complete recourse assumption,

i.e., that Y (xxx,ξξξ) ̸= ∅ for all xxx ∈X and ξξξ ∈ Ξ. Although this is a mild assumption, quite

common in robust optimization, we will show in Section 3.4 that our solution method does

not require this assumption to hold.

We first linearize every product involving variables ξij and yj for some (i, j) in constraints

(7). An exact reformulation of each product can be obtained by introducing continuous

variables zij = ξijyj and adding the following linear constraints to the definition of set

Y (x̂xx, ξ̂ξξ).

zij ≤ ujξij i= 1, ...,mY , j = 1, ..., nY (12)
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zij ≤ yj i= 1, ...,mY , j = 1, ..., nY (13)

zij ≥ yj − (1− ξij)uj i= 1, ...,mY , j = 1, ..., nY (14)

zij ≥ 0 i= 1, ...,mY , j = 1, ..., nY (15)

Let us introduce, for all xxx ∈X and all ξξξ ∈ Ξ, set Z(xxx,ξξξ) as the set of decisions (yyy,zzz) ∈

RnY ×RmY ×nY fulfilling constraints (4), (5),(13), (14) and (15) as well as constraints (16)

obtained by replacing each bilinear terms in (7).

nX∑
j=1

tijxj +

nY∑
j=1

(
hijyj +(h̄ij −hij)zij

)
≤ fi i= 1, ...,mY (16)

Remark 1. We enlight that constraints (12) are not part of the definition of Z(xxx,ξξξ) and

that this can be done without changing the optimal objective value of the second stage.

Proof: We show that, given any solution of the second-stage problem violating (12), one

can build a solution respecting (12) with the same objective value. Let ī, j̄ be the indices

of a violated constraint (12) and note that zīj̄ > 0. Since zīj̄ ≤ yj̄ ≤ uj̄, violation of the

constraint implies ξīj̄ = 0. Therefore (14) reduces to zīj̄ ≥ yj̄−uj̄, which remains satisfied by

setting zīj̄ = 0. Note that, since (h̄īj̄ − hīj̄)≥ 0 (see Assumption 2), setting zīj̄ = 0 satisfies

constraint (16) as well, as it only reduces its left-hand-side. Finally, notice that zīj̄ does

not appear in the objective function, i.e., the two solutions have the same value.

In turn, it is clear that problem (8) is equivalent to the following adjustable robust

problem

min
xxx∈X

{
ccc⊤xxx+max

ξξξ∈Ξ
min

(yyy,zzz)∈Z(xxx,ξξξ)
ddd⊤yyy

}
(17)

where the linking constraints between yyy, zzz and ξξξ are of simpler kind. In the next theorem,

we turn problem (17) into an adjustable robust problem where the uncertainty is confined

within the objective function. This result follows from a polyhedral analysis result and

Lagrangian duality.

Theorem 1. Problem (8) is equivalently solved by the following problem.

min
xxx∈X

{
nX∑
j=1

cjxj + max
ξξξ∈Ξ,λλλ≤0

min
(yyy,zzz)∈Z′(xxx)

nY∑
j=1

(
djyj +

mY∑
i=1

λijξij(zij − yj)

)}
(18)

where Z ′(xxx) is defined as Z(xxx,ξξξ) after omitting constraints (14).
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Proof: As already observed, one can consider problem (17) instead of (8). Then, by linear-

ity of the objective function, condition ”(yyy,zzz) ∈ Z(xxx,ξξξ)” can equivalently be replaced by

”(yyy,zzz)∈ conv(Z(xxx,ξξξ))”. Moreover, it holds that, for all ξξξ ∈Ξ, conv(Z(xxx,ξξξ)) = conv(Z ′(xxx))∩

{(yyy,zzz) : (14)} (see Theorem 4 in appendix). The inner problem asks to minimize
∑nY

j=1 djyj

for (yyy,zzz)∈Z ′(xxx)∩{(yyy,zzz) : (14)}.} By using a Dantzig-Wolfe reformulation of conv(Z ′(xxx)),

one can see this problem as an LP for which strong Lagrangian duality holds, provided

that the primal problem is feasible. Since we have assumed that Y (xxx,ξξξ) ̸= ∅ for all xxx ∈X

and ξξξ ∈ Ξ, strong duality holds. The partial Lagrangian dual is given as follows, where λλλ

are the dual variables associated to the interdiction constraints (14).

max
λλλ≤0

min
(yyy,zzz)∈Z′(xxx)

{
nY∑
j=1

djyj +

mY∑
i=1

nY∑
j=1

λij((1− ξij)uj + zij − yj)

}
(19)

By splitting the terms, we obtain:

max
λλλ≤0

min
(yyy,zzz)∈Z′(xxx)


nY∑
j=1

djyj +

mY∑
i=1

 ∑
j:ξij=0

λij(uj + zij − yj)+
∑

j:ξij=1

λij(zij − yj)

 (20)

We now argue that λij = 0 is optimal whenever ξij = 0. In this case, λij is multiplied by

zij + uj − yj, which is nonnegative as zij ≥ 0 and yj ≤ uj. Given that λij ≤ 0, an optimal

choice for the outer maximization problem is λij = 0.

The reformulation introduced in Theorem 1 is conceptually simpler than problem (8) as

uncertainty interferes within the objective function only. In other words, as shown by the

following example, the feasible space does not depend on ξξξ.

Example 1. Let us consider a numerical example, in which the here-now-variables have

been fixed and the resulting inner optimization problem is as follows:

max
ξξξ∈{0,1}2:eee⊤ξξξ≤1

min −y1− y2

s.t. (1+ ξ1)y1+(1+2ξ2)y2 ≤ 3

y1, y2 ∈ {0,1}

(21)

It is easily seen (e.g., by enumeration) that the optimal objective value is −1, obtained

by choosing ξ1 = 0 and ξ2 = 1. A direct application of Theorem 1 yields the following
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reformulation.

max
ξξξ∈{0,1}2,λλλ∈R2

−:eee⊤ξξξ≤1
min −y1− y2+ ξ1λ1(z1− y1)+ ξ2λ2(z2− y2)

s.t. y1+ z1+ y2+2z2 ≤ 3

z1 ≤ y1

z2 ≤ y2

y1, y2 ∈ {0,1}

z1, z2 ≥ 0

(22)

Note that, for any ξξξ, the feasible space does not change. Thus, (y1, y2, z1, z2) = (1,1,0,0) is

always feasible. However, this solution is optimal only when ξ1 = ξ2 = 0 and the objective

is −y1 − y2 = −2. Yet, if we consider ξ1 = 0 and ξ2 = 1, the objective is now −y1 − y2 +

λ2(z2 − y2). Since λ2 ≤ 0 and z2 − y2 ≤ 0, the inner minimization problem will “tend to”

minimize the distance between z2 and y2. With a negative enough value for λ2, such a

penalization will eventually force y2 = z2 since any feasible solution with y2 ̸= z2 will be

dominated. Observe that, for this example, λ2 =−1 is enough. Similarly. when ξ1 = 1 and

ξ2 = 0, one can show that λ1 =−1 is enough.

Our method moves uncertainty to the objective function by imposing the constraints

zij = ξijyj for each i= 1, . . . ,mY and j = 1, . . . , nY , and by relaxing them in a Lagrangian

way by using multipliers λij. We now discuss a possible way of fixing the multipliers to an

optimal value, so as to omit bilinear terms λijξij.

Corollary 1. Let λ∗
ij(ξξξ) be an optimal solution associated to a given ξξξ ∈Ξ for problem

(19) and let λij be such that λij ≤ λ∗
ij(ξξξ)≤ 0 for all ξξξ ∈Ξ. Then, problem (8) can be rewritten

as follows:

min
xxx∈X

{
nX∑
j=1

cjxj +max
ξξξ∈Ξ

min
(yyy,zzz)∈Z′(xxx)

nY∑
j=1

(
djyj +

mY∑
i=1

λijξij(zij − yj)

)}
. (23)

Proof: By definition of λ∗
ij(ξξξ), problem (18) is equivalent to

min
xxx∈X

{
nX∑
j=1

cjxj +max
ξξξ∈Ξ

min
(yyy,zzz)∈Z′(xxx)

nY∑
j=1

(
djyj +

mY∑
i=1

λ∗
ij(ξξξ)ξij(zij − yj)

)}
. (24)

By optimality, for a given ξξξ′ ∈ Ξ, since λ∗
ij(ξξξ

′) ≤ 0 and zij ≤ yj, any value λij ≤ λ∗
ij(ξξξ

′) is

also an optimal solution for ξξξ′. This achieves the proof.
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Corollary 1 therefore eliminates the need for variables λλλ by replacing them with a fixed

and exact violation penalization in the objective. However, it does not provide a practical

value for λij which would not be problem-specific. In the next lemma, we give such a value

for a large class of problems.

Lemma 1. In Corollary 1, assume that dj ≤ 0 and hij ≥ 0 (i = 1, ...,mY and j =

1, ..., nY ). Then, one can safely use λij = dj for all i= 1, ...,mY and j = 1, ..., nY , provided

that the integrality requirement on variable zij is added to the definition of Z ′(xxx) for all

i= 1, ...,mY and all j = 1, ..., nY such that yj is an integer variable.

Proof: Note that, for a given ξξξ ∈Ξ, the inner maximization term of (18) can be reformu-

lated as follows:

max


θ :

θ≤
nY∑
j=1

(
djyj +

mY∑
i=1

λijξij(zij − yj)

)
∀(yyy,zzz)∈Z ′(xxx)

λij ≤ 0 i= 1, ...,mY , j = 1, ..., nY

θ ∈R


(25)

Let (θ∗,λλλ∗) be an optimal solution of (25). By strong duality, the following holds:

θ∗ = min
(yyy,zzz)∈Z(xxx,ξξξ)

ddd⊤yyy (26)

Our goal is to derive a family of valid inequalities for (25), depending on points in Z ′(xxx)

but not on the multipliers, that bound θ∗ from above.

To this end, let (yyy′,zzz′) be any point in Z ′(xxx), and define a point (ŷyy, ẑzz) as follows: for all

j ∈ {1, ..., nY },

• If ξij = 0 for every i= 1, ...,mY , set ŷj = y′j and ẑij = 0 for all i= 1, ...,mY .

• Otherwise, there exists at least one index i∈ {1, ...,mY } such that ξij = 1.

Let īj ∈ argmini∈{1,...,mY }{z′ij : ξij = 1} and set ŷj = z′ījj and ẑij = ξij ŷj for all i= 1, ...,mY .

Note that, in both cases, we have ŷj ≤ y′j for all j. This is straightforward in the first case,

and is enforced by (13) in the latter as ŷj = z′ījj. In addition, we have ẑij ≤ z′ij for all i

and j. Now, since hij ≥ 0, (ŷyy, ẑzz)≤ (yyy′,zzz′), and ŷj = ẑij when ξij = 1, we can conclude that

(ŷyy, ẑzz)∈Z(xxx,ξξξ). From (26) it follows that, given any feasible solution to (25) of value θ, we

have:

θ≤
nY∑
j=1

dj ŷj =
∑
j∈N

dj ŷj +
∑

j∈{1,...,nY }\N

dj ŷj (27)
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where N denotes the set of indices of variables for which ξij = 0 for all i= 1, ..., nY . Observe

that, for each j ∈N , we have ŷj = y′j, hence

∑
j∈N

dj ŷj =
∑
j∈N

djy
′
j =
∑
j∈N

(
djy

′
j +

mY∑
i=1

djξij(z
′
ij − y′j)

)
. (28)

As to the remaining variables, we have∑
j∈{1,...,nY }\N

dj ŷj =
∑

j∈{1,...,nY }\N

djz
′
ījj

=
∑

j∈{1,...,nY }\N

(
djy

′
j + djξījj(z

′
ījj
− y′j)

)
,

where the last equality holds as ξījj = 1. Since, for each i and j, dj(z
′
ij − y′j)≥ 0, we have,

∑
j∈{1,...,nY }\N

dj ŷj ≤
∑

j∈{1,...,nY }\N

djy
′
j + djξījj(z

′
ījj
− y′j)+

∑
i ̸=īj

djξij(z
′
ij − y′j)

=

∑
j∈{1,...,nY }\N

(
djy

′
j +

mY∑
i=1

djξij(z
′
ij − y′j)

)
(29)

By combining (27), (28), and (29), we obtain

θ≤
∑
j∈N

(
djy

′
j +

mY∑
i=1

djξij(z
′
ij − y′j)

)
+

∑
j∈{1,...,nY }\N

(
djy

′
j +

mY∑
i=1

djξij(z
′
ij − y′j)

)
=

nY∑
j=1

(
djy

′
j +

mY∑
i=1

djξij(z
′
ij − y′j)

)
(30)

Given the arbitrary choice of point (yyy′,zzz′) ∈Z ′(xxx), the following family of inequalities are

valid for (25):

θ≤
nY∑
j=1

(
djyj +

mY∑
i=1

djξij(zij − yj)

)
∀(yyy,zzz)∈Z ′(xxx) (31)

We know from Corollary 1 that all negative enough λij values are optimal. Any inequality

of (25) would be dominated by these cuts when λij ≤ dj, making λij = dj a safe choice.

Example 2. We continue the example based on the problem introduced in Example 1

to discuss the interpretation of Lemma 1. As anticipated, a large enough value for λ1 and

λ2 is −1. The objective function now becomes −y1 − y2 − ξ1(z1 − y1)− ξ2(z2 − y2) which,

once re-organized, is equivalently written as follows.

−y1(1− ξ1)− ξ1z1− y2(1− ξ2)− ξ2z2 (32)
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A very clear interpretation is now at hand: when ξ1 = 0, then the contribution of (y1, z1)

to the objective is −y1, whereas this term reduces to −z1 if ξ1 = 1. In other words, setting

ξ1 = 1 and ξ2 = 0 forces z1 = y1. More in general, for a given ξξξ ∈ Ξ, setting ξij = 1 induces

a contribution h̄ijyj in the left-hand-side of the i-th constraint (16).

Lemma 1 achieves the ultimate goal of reformulating problem (8) as an adjustable robust

optimization problem with objective uncertainty. We emphasize that this result generalizes

the work of Fischetti et al. (2019) on bi-level interdiction games in two directions: (i) it

extends their results (in particular, Theorems 2 and 3) to two-stage robust problems; and

(ii) it provides a dual interpretation of valid cost penalization.

We conclude this section by reminding that, in case Lemma 1 cannot be applied and

one is not capable of deriving tight values of the multipliers by exploiting the structure

of the problem, one can resort to Corollary 1, i.e., the fact that a sufficiently small lower

bound on the multipliers value allows for a valid reformulation. To this aim, one can use

the algorithm discussed in Subramanyam (2022), which makes an initial guess on the

smallest (i.e., most negative) value of a multiplier and iteratively multiplies this value by

a factor of two until validity can be proved. Note that, for a fixed ξ̂ ∈ Ξ, a given λ≤ 0 is

valid if
∑nY

j=1

∑mY

i=1 λij ξ̂ij(z
∗
ij−y∗j ) = 0 holds, where (y∗,z∗) denotes an optimal wait-and-see

decision in case ξ̂ realizes. This directly follows from KKT optimality conditions.

3.2. Relaxation

In the previous section, we have reformulated problem (8) so as to obtain an objective-

uncertain ARO. This class of problems has been studied, among others, in Kämmerling and

Kurtz (2020), Arslan and Detienne (2022) and Detienne et al. (2021); most of these works

only consider the case in which here-and-now variables are binary and the uncertainty

set is convex. We now make a step further in the analysis of uncertain adjustable robust

problems, and consider the more general case with mixed-integer here-and-now decisions,

and in which the uncertainty set is binary. In the following theorem, we adapt to our

setting a result introduced in Kämmerling and Kurtz (2020).

Theorem 2. Let v∗ be the optimal objective value of problem (8) and let v∗R be the

optimal objective value of the following problem

max θ (33)
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s. t. θ≤
nX∑
j=1

cjx̂j +

nY∑
j=1

(
dj ŷj +

mY∑
i=1

λijξij(ẑij − ŷj)

)
∀(x̂xx,ŷyy, ẑzz)∈W (34)

ξξξ ∈Ξ, (35)

where W denotes the set of extreme points of the convex hull of {(xxx,yyy,zzz) : xxx ∈X, (yyy,zzz) ∈

Z ′(xxx)}. Then, v∗ ≥ v∗R. Moreover, if all active constraints of type (34) are built upon the

same here-and-now decision, say x̄xx, then v∗ = v∗R and x̄xx solves problem (8).

We let the reader refer to Kämmerling and Kurtz (2020) for the proof of this result.

Instead, we emphasize that the identification of active constraints of type (34), which is

straightforward in the convex setting considered in Kämmerling and Kurtz (2020), is not

trivial in case the uncertainty set is discrete, as discussed in Section 4.2.

Though the relaxation introduced in Theorem 2 consists in a monolithic Mixed Integer

Linear Program (MILP), it contains an exponential number of cuts of type (34). For the

sake of simplicity, let us introduce the following function:

Π(xxx,ξξξ,yyy,zzz) :=

nX∑
j=1

cjxj +

nY∑
j=1

(
djyj +

mY∑
i=1

λijξij(zij − yj)

)
(36)

The procedure described in Algorithm 1 is a cut-generation approach for solving problem

(33)-(35). The finite convergence of the obtained algorithm is well-established. Algorithm

1 is initialized with one point (xxx0,yyy0,zzz0) such that xxx0 ∈ X and (yyy0,zzz0) ∈ Z ′(xxx0); such a

point always exists by Assumption 1.

Algorithm 1 Cut-generation algorithm

Initialize Ŵ with some point (xxx0,yyy0,zzz0) with xxx0 ∈X and (yyy0,zzz0)∈Z ′(xxx0).

repeat

(θ∗,ξξξ∗)← argmax
{
θ : (θ,ξξξ)∈R×Ξ θ≤Π(x̂xx,ξξξ, ŷyy, ẑzz) ∀(x̂xx,ŷyy, ẑzz)∈ Ŵ

}
(xxx∗,yyy∗,zzz∗)← argmin{Π(xxx,ξξξ∗,yyy,zzz) :xxx∈X, (yyy,zzz)∈Z ′(xxx)}

Ŵ ← Ŵ ∪{(xxx∗,yyy∗,zzz∗)}

until θ∗ ≥Π(xxx∗,ξξξ∗,yyy∗,zzz∗)

stop, and v∗R = θ∗.
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3.3. Solving the separation problem

In this subsection, we discuss the complexity of the separation problem of Algorithm 1.

This separation problem is recalled here: for a fixed ξ̄ξξ ∈Ξ, this problem reads:

min

nX∑
j=1

cjxj +

nY∑
j=1

(
djyj +

mY∑
i=1

λij ξ̄ij(zij − yj)

)
(37)

s.t. xxx∈X, (yyy,zzz)∈Z ′(xxx) (38)

We make the following remark on solving the separation problem.

Remark 2 (Relation with the deterministic problem). The separation prob-

lem can be solved by any oracle designed for solving the deterministic problem (1)-(5) with

appropriate input values.

Proof: Reading the proofs of Corollary 1 and Theorem 1 in the reversed order, the following

holds.

min
xxx∈X,(((yyy,zzz)∈Z′(xxx)

Π(xxx,ξ̄ξξ,yyy,zzz) (39)

=min
xxx∈X

{
ccc⊤xxx+ min

(yyy,zzz)∈Z′(xxx)
ddd⊤yyy+

nY∑
j=1

mY∑
i=1

λij ξ̄ij(zij − yj)

}
(40)

=min
xxx∈X

{
ccc⊤xxx+ min

(yyy,zzz)∈conv(Z′(xxx))
ddd⊤yyy+

nY∑
j=1

mY∑
i=1

λij ξ̄ij(zij − yj)

}
(41)

=min
xxx∈X

{
ccc⊤xxx+max

λλλ≤000
min

(yyy,zzz)∈conv(Z′(xxx))
ddd⊤yyy+

nY∑
j=1

mY∑
i=1

λij((1− ξ̄ij)uj + zij − yj)

}
(42)

=min
xxx∈X

{
ccc⊤xxx+ min

(yyy,zzz)∈Z(xxx,ξ̄ξξ)
ddd⊤yyy

}
(43)

= min
xxx∈X,yyy∈Y (xxx,ξ̄ξξ)

ccc⊤xxx+ddd⊤yyy (44)

Now, given an optimal solution (xxx∗,yyy∗) of the deterministic problem arising when ξξξ = ξ̄ξξ,

an optimal solution to the separation problem is given by (xxx∗,yyy∗,zzz∗), where zzz is defined as

z∗ij = ξ̄ijy
∗
j .

Remark 3. The separation problem and the deterministic problem (1)-(5) belong to

the same complexity class.

Proof: We already have that any instance of the separation problem can be solved using an

oracle for the deterministic problem. We also show that any instance of the deterministic
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problem can be solved by any oracle solving the separation problem. Indeed, using ξ̄ξξ =000,

problem (37)-(38) reduces to the deterministic problem since variable zzz becomes useless

and can be removed from the model. Indeed, zzz comes in ≤-inequality constraints with

positive coefficients and have no contribution to the objective function. Thus, solutions

such that zzz >000 are dominated by those solutions with zzz =000.

3.4. Dealing with infeasibility

In this section we discuss the behaviour of our approach when (i) problem (8) is feasible

but the complete recourse assumption is not satisfied; and (ii) feasibility of problem (8) is

unknown.

In case (i), the proposed relaxation is valid, provided that at least one here-and-now

decision with a feasible recourse decision exists, for any given scenario. This is ensured

by feasibility of problem (8). Since the separation procedure first decides the scenario and

then computes the corresponding here-and-now and recourse decisions, it cannot happen

a here-and-now decision without recourse decision be selected.

As to case (ii), the only feasibility check which has to be added at each iteration of

Algorithm 1 is that, given the current scenario ξ∗ ∈Ξ returned by the maximization, there

indeed exists one x ∈X such that Y (x,ξ∗) ̸= ∅. This condition is met if and only if the

following optimization problem (which is feasible as the deterministic problem was assumed

feasible) has an optimal objective value of zero:

min

mY∑
i=1

nY∑
j=1

λijξ
∗
ij(zij − yj) (45)

s. t.x∈X, (y,z)∈Z ′(x). (46)

If this is not the case, we exhibit a scenario ξ∗ for which Y (x,ξ∗) = ∅ for each x∈X, and

hence Algorithm 1 is stopped.

3.5. Relation to Subramanyam (2022)

An alternative approach to the class of problems addressed in this paper where uncertainty

is moved from the constraints to the objective function appears in Subramanyam (2022).

As already mentioned, this approach explicitly considers problems in which uncertainty

affects the right-hand side coefficients, each described by means of a binary uncertainty

variable. Then, each variable ξi is replaced by a deterministic variable vi, and constraint



Lefebvre, H., Malaguti, E. & Monaci, M.: Adjustable robust optimization with discrete uncertainty
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 17

∥v − ξ∥22 = 0 is relaxed in a Lagrangian way by means of a single multiplier. This would

lead to a problem where uncertainty affects the objective function only.

However, the method proposed in Subramanyam (2022) can handle problems in which

uncertainty affects the constraint matrix as well. In this case, each uncertainty coefficient of

the constraint matrix is modelled by introducing uncertainty variable ξij, thus originating

bilinear terms. These product terms can be linearized by using McCormick inequalities

(provided that variables are bounded), thus resorting to a problem in which uncertainty

variables appear in the right-hand side only and the previous scheme can be used.

We now show that they are not equivalent because, for a problem in the general form (8),

they result in different reformulations. Consider the second-stage optimization problem for

a fixed x̂xx ∈X and ξ̂ξξ ∈ Ξ after having introduced variables zij to linearize every products

ξijyj. To lighten our notation, let us assume that uj = 1 (j = 1, ..., nY ). We have that

yyy ∈ Y (x̂xx, ξ̂ξξ) if, and only if, yyy ∈ Y and there exists zzz such that
nY∑
j=1

hijyj +(h̄ij −hij)zij ≤ fi−
nX∑
j=1

tijx̂j i= 1, ...,mY , (47)

zij − yj ≤ 0 i= 1, ...,mY , j = 1, ..., nY , (48)

zij ≤ ξ̂ij i= 1, ...,mY , j = 1, ..., nY , (49)

yj − zij ≤ (1− ξ̂ij) i= 1, ...,mY , j = 1, ..., nY , (50)

zij ≥ 0 i= 1, ...,mY , j = 1, ..., nY . (51)

A direct application of the reformulation introduced in Subramanyam (2022) leads to the

introduction of variables vij replacing each occurrence of ξ̂ij. Constraints ξij = vij are then

summarized as ∥v − ξ∥22 = 0, and this requirement is then relaxed in a Lagrangian way

with penalty coefficient λ≤ 0. The resulting formulation, where the uncertain parameters

ξ̂ij only appear in the objective function, reads as follows

min

nY∑
j=1

djyj +λ

mY∑
i=1

nY∑
j=1

(2vij ξ̂ij − vij − ξ̂ij) (52)

s.t. (47), (48), (51), (53)

yyy ∈ Y, (54)

zij ≤ vij i= 1, ...,mY , j = 1, ..., nY , (55)

yj − zij ≤ (1− vij) i= 1, ...,mY , j = 1, ..., nY , (56)

0≤ vij ≤ 1 i= 1, ...,mY , j = 1, ..., nY . (57)
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This scheme can be viewed as a surrogate approach of the augmented Lagrangian method

(see, Feizollahi et al. (2016)), as the augmented penalization ∥vvv − ξ̂ξξ∥2 is always smaller

than eee⊤vvv+ eee⊤ξ̂ξξ − 2vvv⊤ξ̂ξξ. Conversely, our approach relies on a convex reformulation of the

wait-and-see problem by polyhedral arguments and standard LP duality. Our approach

introduces instead one multiplier λij for each constraint yj−zij ≤ (1− ξ̂ij). By Corollary 1,

our method can easily be reduced to a single-parameter method by considering a unique

multiplier λ :=mini,j λij, provided that λij are valid.

We now turn our attention to comparing the Lagrangian penalization in the objective

function of the two reformulations. For simplicity, consider the case that ddd≤000. By Theorem

5 (point 2) in Subramanyam (2022) a multiplier λ=
∑nY

j=1 dj is sufficient. In our approach,

one can take λij = dj (see Lemma 1). To simplify the comparison, we will use a single

multiplier λ :=mini,j λij. Clearly, we have λ≤ λ, i.e., we are making our penalization term

intentionally larger, still preserving its validity. Now, for each i and j we have that

• if ξ̂ij = 0, then λ(2vij ξ̂ij − vij − ξ̂ij) =−λvij ≥ 0 = λij ξ̂ij(zij − yj);

• if ξ̂ij = 1, then λ(2vij ξ̂ij − vij − ξ̂ij) = λ(vij − 1) ≥ 0 ≥ λ(zij − yj), where the last two

inequalities derive from vij ≤ 1 and from equation (50), respectively.

Thus, the penalization term used in Subramanyam (2022) is always larger than the one

employed in our approach, showing that the two reformulations are different and they can

only be directly compared from a computational viewpoint. In Section 5.1 we perform such

a comparison on a class of problems that can be naturally cast in the setting considered

in Subramanyam (2022).

Finally, we observe that the way feasibility issues are handled in Subramanyam (2022) is

substantially different from what we describe in Section 3.4. Indeed, in model (45)–(46) we

optimize over the set of feasible first- and second-stage decisions, while only second-stage

decisions are considered in the aforementioned work. Second, our approach is aimed at

proving infeasibility of the whole original problem, possibly halting the algorithm, while

the one in Subramanyam (2022) is used to prove infeasibility of a single first-stage decision.

If such a case is detected, a so-called feasibility cut is added to the master problem and

the algorithm continues.

4. A Branch-and-bound algorithm

In this section, we generalize the branch-and-bound scheme introduced in Kämmerling and

Kurtz (2020) to the case in which the here-and-now decisions are mixed-integer and the
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uncertainty set is binary. This requires additional effort for dealing with the discrete nature

of the uncertainty set. In addition, we study the convergence of the resulting algorithm, a

task which requires non-trivial arguments due to the presence of continuous variables. For

the sake of simplicity, we present the algorithm for the case in which integer here-and-now

variables are all binary, the extension to the general case being straightforward.

4.1. Statement of the procedure

For a given node q with local bounds noted lllq and uuuq, let W q := {(xxx,yyy,zzz) : xxx ∈ X ∩

[lllq,uuuq], (yyy,zzz)∈Z ′(xxx)} and let vqR denote the optimal objective value of (33)-(35) where W

has been replaced by W q. Additionally, we let Hq denote the set of active constraints of

type (34) for the resulting problem and xxx[h] denote the here-and-now decision which was

used to generate the h-th cut of type (34), for h∈Hq. Finally, let us introduce x̄xxq defined

as follows:

x̄xxq =
1

|Hq|
∑
h∈Hq

xxx[h]. (58)

The algorithm initially solves relaxation (33)–(35) and computes x̄xx0. If x̄xx0 ∈ {lll0,uuu0}, the

problem has been solved to optimality and the algorithm stops. Otherwise, a branching is

executed (see below) and two descendant nodes are generated. For each descendant node

q, we solve the associated relaxation and compute x̄xxq. If x̄xxq ∈ {lllq,uuuq}, the node is solved,

and possibly the incumbent solution is updated. Otherwise, problem q is added to a list

L storing nodes associated with active problems. At each iteration, the algorithm removes

from L all nodes whose associated lower bound is larger or equal to the incumbent solution

value, and selects from L the node, say q, with the smallest value of lower bound. The

branching variable is selected according to solution x̄xxq, giving priority to binary variables:

when a binary variable j is selected, its bounds are fixed to 0 and 1. In case a continuous

variable is chosen, we update its upper bound to x̄q
j in the left descendant node and its

lower bound to x̄q
j in the right descendant node. The algorithm stops when L is empty.

In order to compute feasible solutions during the execution of the branch-and-bound

algorithm, we can exploit the following result.

Proposition 1. Let q be a given node and let us assume that x̄q
j ∈ {0,1} for all j for

which xj is required to be binary. Then, a feasible solution for (8) can be computed by

solving formulation (33)-(35) where W has been replaced by vertex(conv({x̄xxq}×Z ′(x̄xxq))).
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Proof: The proof is similar to that of Theorem 2.

For every node q, when appropriate, we will denote by vqU the objective value obtained

applying Proposition 1. Notice that, even when some binary here-and-now variables are

fractional, one could still try to round fractional values to the closest integer and check if

the resulting solution is feasible, in which case an upper bound for problem (8) is obtained.

4.2. Identifying active cuts

At each node of the branch-and-bound tree, a (possibly infeasible) here-and-now decision is

reconstructed from the solved relaxation by means of formula (58). This formula computes

the “average” here-and-now decision among all active cuts, gathered in Hq.

The branch-and-bound algorithm is based on computing equation (58) at each branching

node. When the uncertainty set Ξ is a convex set, identifying the set of active constraints

can be easily done by checking the slack variables of each cut. We now discuss a possible way

of performing this task when the uncertainty set is discrete. Though one could replace Hq

in (58) by the set of all generated constraints, this would lead to poor branching decisions

and low-quality heuristic solutions, resulting in a large branch-and-bound tree. For this

reason, we instead identify set Hq by searching for an Irreducible Infeasible Subsystem (IIS)

of the following infeasible model.

max 0 (59)

s. t. θ≤
nX∑
j=1

cjx̂j +

nY∑
j=1

(
dj ŷj +

mY∑
i=1

λijξij(ẑij − ŷj)

)
∀(x̂xx,ŷyy, ẑzz)∈ Ĥq (60)

θ≥ vqR + ε (61)

ξξξ ∈Ξ, (62)

where ε > 0 is a positive input tolerance and vqR denotes the optimal value of the relax-

ation at the node. Depending on the selected tolerance ε, one can identify a subset Hq of

constraints preventing θ from being strictly larger than vqR, i.e., being active by definition.

4.3. Convergence result

The enumerative scheme presented in the previous section solves problem (8) by itera-

tively partitioning the feasible set, possibly performing branching on a continuous variable.

Clearly, the algorithm introduced in Kämmerling and Kurtz (2020) finitely converges as

X ⊆ {0,1}nX . We now show that, in the mixed-integer case, the algorithm either finitely
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converges or converges towards an optimal solution of (8) although, potentially, an infinite

number of steps is required.

Theorem 3. Let v∗ denote the optimal solution value of problem (8). Then, the branch-

and-bound algorithm either finitely terminates with an incumbent having value v∗ or

enters an infinite sequence of nodes, say p ∈ P , for which {x̄xxp}p∈P → xxx∗, where xxx∗ is an

optimal solution of the problem.

Proof: We focus on the case in which the algorithm enters an infinite sequence of nodes.

Since our branching strategy prioritizes binary variables over continuous ones, we may

assume that all variables of the former type are fixed in the sequence. Moreover, an infinite

sequence of nodes implies the existence of an infinite subsequence of nodes belonging to

the same branch; we denote this subsequence by P and its generic node by p. We will

denote by [lllp,uuup] the local bounds of node p, by (θp∗,ξξξp∗) the optimal solution of problem

(33)-(35), and by x̄xxp∗ the here-and-now decision computed according to (58).

Since branching always reduces the domain of the here-and-now variables, we have

[lllp+1,uuup+1]⊆ [lllp,uuup]. Thus, there exists a subsequence of P for which [lllp,uuup] converges to an

interval [lll∗,uuu∗]. In addition, there exists a subsequence for which ξξξp∗ converges to a point

ξξξ∗, as ξξξ variables are binary and the number of their feasbile combinations is finite.

Since our node selection strategy always picks the node with lowest bound, we have that

θp∗ is a lower bound on v∗. In addition, branching operation implies that θ(p+1)∗ ≥ θp∗,

and thus θp∗ converges to a value θ∗. Finally, x̄xxp∗ ∈ [lllp,uuup] ⊆ [lll0,uuu0], hence there exists a

subsequence for which x̄xxp∗ converges to a solution x̄xx∗ that belongs to [lll∗,uuu∗]; otherwise

there would exist a node p for which x̄xxp∗ /∈ [lllp,uuup]. In addition, x̄xx∗ ∈X as X is a compact

set.

We now show that x̄xx∗ ∈ vert([lll∗,uuu∗]). Indeed, let j ∈ {1, ..., nX} be a here-and-now variable

index which is infinitely branched on, and consider the subsequence P ′ ⊆ P such that, for

all p∈ P ′, up+1
j = xp∗

j . If P ′ is infinite, then {up∗
j }p∈P ′→ x∗

j since {xp∗
j }p∈P ′→ x∗

j as P ′ ⊆ P .

If instead P ′ is finite, then the subsequence P ′′ ⊆ P such that, for all p ∈ P ′′, lp+1
j = xp∗

j is

infinite and, for the same reason, we have {lp∗j }p∈P ′′→ x∗
j .

Thus, we have that x̄xx∗ ∈ vert([lll,uuu]) and, by Theorem 2, its cost is θ∗. In addition, x̄xx∗ is

feasible for (8) and thus θ∗ ≥ v∗. Since θp∗ ≤ v∗ for all p∈ P , this is true for θ∗ as well, and

hence θ∗ coincides with the optimal solution value v∗.



Lefebvre, H., Malaguti, E. & Monaci, M.: Adjustable robust optimization with discrete uncertainty
22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

5. Applications and Computational experiments

In this section, we report extensive computational results performed on two different appli-

cations. 1 Our implementation was done in C++17 using GuRoBi version 10 to solve every

sub-problem. All the experiments were run on an AMD 3960 running at 3.8 GHz. with a

time limit equal to 3,600 CPU seconds per run.

5.1. Facility Location Problem

In our first application, we consider a Facility Location Problem (FLP) with set of facilities

V1 and set of customers V2. For each facility u ∈ V1, we denote by fu its opening cost

and by qu its capacity. For each customer v ∈ V2, we let dv be her demand and pv be the

profit earned if one decides to serve the customer. In this case, all the associated demand

must be provided by a unique facility without splitting across multiple facilities. For each

connection (u, v)∈ V1×V2, we denote by tuv the transportation cost for delivering dv units

of goods from u to v. The objective is to maximize the overall profit, deducted of opening

and transportation costs.

In an uncertain context, we consider an adjustable robust decision process in which here-

and-now decisions concern the facilities to be opened. Uncertainty materializes into random

disruptions of the opened facilities, possibly resulting in an actual capacity qu ≤ q̄u, where

q̄u denotes the nominal capacity value. More precisely, let R ∈N\{0} denote the number of

possible realizations of the capacity of each facility u that differ from the nominal value. In

our model, for a given R we let qu ∈ {q̄u(1− r
R
), r= 0, . . . ,R}. In other words, when R= 1

we consider the case of full disruptions only, whereas R≥ 2 allows for partial disruptions.

We introduce a binary variable ξur taking value 1 whenever facility u has actual capacity

q̄u(1 − r
R
). By following the traditional Γ-uncertainty approach, we control the level of

uncertainty by means of a parameter Γ∈N and accordingly define the uncertainty set as

Ξ=

{
ξ ∈ {0,1}|V1|×(R+1) :

∑
u∈V1

R∑
r=0

r ξur ≤ Γ,
R∑

r=0

ξur = 1∀u∈ V1

}
(63)

For a given scenario ξ ∈ Ξ the actual capacity of each facility u ∈ V1 is thus defined as

qu(ξ) =
∑R

r=0 q̄u(1−
r
R
)ξur.

1 All instances considered in this paper are publicly available at https://github.com/hlefebvr/AC_

AdjustableRobustOptimizationWithDiscreteUncertainty.
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Our adjustable robust model is given as

min
x∈{0,1}|V1|

{∑
u∈V1

fuxu +max
ξ∈Ξ

min
y∈Y (x,ξ)

∑
u∈V1

∑
v∈V2

(tuv− pv)yuv

}
(64)

where, given x∈ {0,1}|V1| indicating the facilities to be opened and ξ ∈Ξ, the wait-and-see
variables y ∈ {0,1}|V1|×|V2| assign facilities to customers and have feasible space Y (x,ξ)

defined as

Y (x,ξ) =

y ∈ {0,1}|V1|×|V2| :

∑
u∈V1

yuv ≤ 1 ∀v ∈ V2∑
v∈V2

dvyuv ≤ qu(ξ)xu ∀u∈ V1

 . (65)

Here, the first set of constraints imposes that each customer is served at most once, while

the second states that the amount of goods leaving a facility does not exceed its actual

capacity.

5.1.1. Instance generation We generated facility location instances according to

Cornuéjols et al. (1991), and considered the following sizes (|V1|, |V2|): (10, 20), (10, 30),
(10, 40), (10, 50), (15, 20), (15, 30), (15, 40) and (15, 50). For each facility u ∈ V1, the

nominal capacity q̄u was uniformly generated between 10 and 160, while the opening cost

was computed as fu = αu+βu

√
q̄u where αu and βu were generated between 0 and 90 and

100 and 110, respectively. Demands were randomly generated in [0,1] and scaled so that∑
u∈V1

q̄u/
∑

v∈V2
dv = µ where µ is a parameter taking value 2 or 3. The candidate positions

for opening facilities and the location of customers were randomly generated in the unitary

square. Then, for each pair (u, v)∈ V1×V2, the transportation cost tuv was defined as the

associated Euclidean distance multiplied by 10× dv. Finally, the profit of each customer

was set equal to pv = 4×median{tuv : u ∈ V1}. For each combination of (|V1|, |V2|) and µ,

we generated 10 instances.

5.1.2. Full disruption In this section, we consider the case where unpredictable events

may fully disrupt the facilities. In other words, we consider that R = 1, i.e., the actual

capacity for each facility u is either q̄u (for ξu0 = 1) or 0 (for ξu1 = 1). In this setting, the

wait-and-see feasible set Y (x,ξ) includes those y ∈ {0,1}|V1|×|V2| fulfilling conditions∑
u∈V1

yuv ≤ 1 ∀v ∈ V2 (66)

∑
v∈V2

dvyuv ≤ q̄uxu ∀u∈ V1 (67)

yuv ≤ ξu0 ∀(u, v)∈ V1×V2. (68)
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Given in this form, our model directly fulfills the assumptions made in Subramanyam

(2022), i.e., right-hand side uncertainty. This allowed us to directly run the publicly avail-

able code of the column-and-constraint algorithm proposed in Subramanyam (2022) with

no need of introducing further reformulations, which would make the comparison unclear.

We denote this algorithm as CCG.

Table 1 gives the results of our Branch-and-Cut (B&C) algorithm for Γ= 2,3 and 4. The

leftmost part of the table refers to instances with µ= 2, whereas the rightmost columns

refer to µ= 3. We report the number of instances solved to proven optimality (out of 10),

the average computing time, the average number of nodes, and the average percentage

optimality gap at the end of the computation. All averages are computed with respect

to instances solved to optimality only, but the optimality gap which is computed over all

instances. In addition, we report the number of solved instances, the average computing

time and average percentage optimality gap for algorithm CCG (we report na when the

optimality gap is not available for some instance). In rows where an algorithm can solve a

larger number of instances, we report this figure in boldface.

Algorithm B&C can solve 80% of the instances with µ = 2 and almost 95% of those

with µ = 3. Optimality gaps are typically small but for few cases, these correspond to

runs in which the algorithm fails in finding a high quality feasible solution. The number

of branch-and-bound nodes is always reasonable, meaning that a manageable enumeration

allows to converge to a proven optimal solution. Not surprisingly, larger instances require

a larger computational effort; we also observe that the value of Γ has an impact on the

effort required by our algorithm.

The comparison with algorithm CCG is also depicted in Figure 1, which shows, for µ= 2

and µ= 3, separately, the performance profiles of the two algorithms in terms of fraction

of instances solved within a certain ratio of computing times with respect to the winning

algorithm. While for µ = 2 algorithm B&C is slower but solves a slightly larger number

of instances when more computing time is allowed, when µ = 3, the better performance

of algorithm B&C clearly emerges: indeed, the number instances solved to optimality is

around 20% larger, and very soon the curve associated with B&C dominates the CCG

one.
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µ= 2 µ= 3

B&C CCG B&C CCG

Γ |V 1| |V 2| opt time %gap nodes opt time %gap opt time %gap nodes opt time %gap

2 10 20 10 13.61 0.00 19 10 4.98 0.00 10 13.42 0.00 47 10 12.83 0.00

30 10 64.50 0.00 36 10 106.81 0.00 10 18.50 0.00 32 9 251.17 1.98

40 10 254.90 0.00 27 8 40.25 7.95 10 15.92 0.00 30 10 70.54 0.00

50 10 1058.59 0.00 30 10 106.21 0.00 10 158.93 0.00 47 7 94.25 19.77

15 20 10 122.09 0.00 63 9 134.87 12.46 10 69.06 0.00 72 9 110.83 2.42

30 10 742.82 0.00 60 6 553.81 5.19 10 102.49 0.00 33 7 406.04 9.19

40 6 1509.53 1.93 82 7 92.54 4.96 9 324.90 0.07 87 5 142.36 13.47

50 5 1882.22 2.70 50 6 560.80 5.93 10 250.11 0.00 45 9 445.83 4.72

3 10 20 10 22.74 0.00 31 10 8.46 0.00 10 29.79 0.00 99 9 37.91 na

30 10 75.81 0.00 38 10 37.17 0.00 10 104.54 0.00 80 10 49.70 0.00

40 10 213.18 0.00 36 10 95.80 0.00 10 45.13 0.00 65 10 36.49 0.00

50 8 658.77 27.12 34 8 451.47 2.04 10 230.14 0.00 66 7 254.23 62.61

15 20 10 218.62 0.00 88 7 69.42 32.40 10 126.99 0.00 89 8 109.51 5.53

30 10 1320.35 0.00 55 4 177.90 19.18 10 359.67 0.00 60 6 264.51 16.85

40 4 1353.41 5.55 58 7 468.41 2.57 9 1093.62 0.85 100 2 190.89 23.41

50 1 3572.38 8.89 51 3 856.32 39.34 10 908.34 0.00 65 6 768.34 13.62

4 10 20 10 34.25 0.00 84 10 3.38 0.00 10 41.74 0.00 227 10 7.63 0.00

30 10 121.93 0.00 162 10 37.88 0.00 10 185.98 0.00 380 10 31.53 0.00

40 10 360.44 0.00 165 10 198.41 0.00 10 56.94 0.00 110 10 18.36 0.00

50 8 1000.25 7.72 107 9 306.56 4.66 10 607.93 0.00 117 8 610.69 2.16

15 20 10 452.02 0.00 496 6 246.01 na 10 376.20 0.00 675 9 576.29 2.47

30 7 806.49 13.49 72 3 147.91 na 10 1195.95 0.00 207 5 182.24 53.27

40 3 1210.74 7.00 78 4 1280.90 13.95 5 1875.86 11.97 113 2 562.71 30.50

50 0 - 39.03 - 2 1241.74 108.12 4 1190.49 21.23 77 2 704.55 41.09

Table 1 Computational results on FLP instances with full disruption.
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Figure 1 Performance profile for algorithms B&C and CCG. Parameter µ= 2 (left) and µ= 3 (right).
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5.1.3. Partial disruption In this section, we consider the case where facilities may be

partially disrupted, which happens for R> 1. To evaluate the effect of an increased number

of outcomes for each uncertain coefficient, we tested algorithm B&C on instances with

|V1| = 10, µ = 3 and Γ = 2 by considering R = 1,2,3 and 4. For each group of instances

and each considered value of R, we computed the median solution time for instances with

|V2| = 20,30,40 and 50, separately, and report it as a line in Figure 2. The figure shows

that instances with |V2| ≤ 40 are still effectively solved when R increases, as the median

computing time does not exceed 500 seconds. For |V2| = 50 the median computing time

grows significantly, though the algorithm is still capable of solving 33 out of 40 instances.
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Figure 2 Median time of algorithm B&C for instances with |V1|= 10 and µ= 3 for Γ = 2 and increasing values

of R.
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5.2. Multiple Knapsack Problem

In the second set of experiments we consider a problem in which uncertainty directly

affects the coefficients of the constraint matrix, namely, a variant of the Multiple Knapsack

Problem (MKP). In the deterministic MKP, given a collection of n items with associated

weights wj and profits pj, one should decide a maximum-profit subset of items to be packed

into a set of K identical knapsacks of fixed capacity W . We consider here an adjustable

robust counterpart of the MKP where here-and-now decisions dispatch each item to one

knapsack. At a second stage, the exact weight of each item is revealed and, for each

knapsack, a subset of items having maximum profit is determined while respecting the

capacity constraint. More in details, the actual weight of each item j is either its nominal

value wj or an increased value wj + w̃j, with w̃j > 0. Although the here-and-now decisions

do not have explicit costs in the objective function, not all here-and-now decisions are

equivalent for the second stage. For example, while assigning all items to one knapsack

is a feasible here-and-now decision, this policy may be sub-optimal with respect to the

wait-and-see problem which, therefore, would optimize over a single knapsack only.

In the first stage, each item has to be assigned to exactly one knapsack. The here-and-

now feasible space X is therefore modeled by means of binary variables xjk, defined for

each item j ∈ {1, ..., n} and knapsack k ∈ {1, ...,K}. Each variable takes value 1 if and only

if item j is dispatched to knapsack k. More formally, X is defined as follows

X =

{
xxx∈ {0,1}n×K :

K∑
k=1

xjk = 1∀j = 1, . . . , n

}
. (69)

As to uncertainty, we assume that up to Γ items take their largest weight w̄j, i.e., the

uncertainty set is

Ξ=

{
ξξξ ∈ {0,1}n :

n∑
j=1

ξj ≤ Γ

}
(70)

Accordingly, given ξξξ ∈Ξ, the actual weight of each item j is wj + ξjw̃j.

Once uncertainty reveals, the decision maker selects, for each knapsack, the subset of

items to be packed. Only items dispatched to that knapsack are available for packing, and
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capacity constraint has to be satisfied with respect to actual weights. This leads to the

following definition of the wait-and-see feasible space

Y (xxx,ξξξ) =

yyy ∈ {0,1}n×K :

yjk ≤ xjk ∀j = 1, . . . , n, k= 1, ...,K
n∑

j=1

(wj + ξjw̃j)yjk ≤W ∀k= 1, . . . ,K

 (71)

5.2.1. Instance generation We generated random MKP instances characterized by

number of items n ∈ {10,15} and number of knapsacks K ∈ {2,3,4}. For each item j,

both the profit pj and the nominal weight wj were generated according to a discrete uni-

form distribution in [1,1000]. The capacity of each knapsack was defined as W =
α
∑n

j=1wj

K
,

where α ∈ {0.25,0.50,0.75}. The weight of each item j in the worst case was defined as

w̄j =wj(1+ δj), where δj is randomly generated in [0,H], rounding the resulting value to

the closest integer, and H ∈ {0.1,1.0}.

For each combination of these parameters, we generated 5 different instances, thus pro-

ducing a benchmark with 180 instances. Each instance was solved with different values of

Γ∈ {1,2,3,4}.

5.2.2. Results Table 2 reports the outcome of our experiments. Each entry of the table

refers to the 10 instances associated with the same values of n, α and K for a specific

value of Γ. Column “opt” gives the number of instances (out of 10) that are solved to

proven optimality within the time limit, whereas “time” reports the average computing

time, computed with respect to the instances solved to optimality only.

The results show that our algorithm is able to solve more than 90% of the instances

with n= 10, the most challenging ones in this group being those with α= 0.50 and K = 4,

and about 55% of the instances with n= 15. More in details, when Γ = 1 almost all the

instances (168 out of 180) are solved to optimality, whereas performances get worse for

increasing values of Γ, the number of solved instances being 136 for Γ = 2, 117 for Γ = 3,

and 103 for Γ = 4. As frequently observed in deterministic knapsack problems (Pisinger

2005), the hardest instances appear with intermediate values of the capacity, i.e., α= 0.50

in our context.

Table 3 gives some additional statistics on the behaviour of algorithm B&C, and reports

the number of generated nodes (column “nodes”), the average number of generated cuts

(column “cuts”), and the average time spent for solving the relaxation and the separation
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K = 2 K = 3 K = 4

n α Γ opt time opt time opt time

10 0.25 1 10 0.45 10 4.05 10 237.85

2 10 2.15 10 195.4 7 36.65

3 10 5.85 10 148 8 0.95

4 10 7.1 10 146.45 8 1.35

0.50 1 10 2.2 10 183.65 10 0.6

2 10 14.15 10 754.65 3 0.1

3 10 36.75 8 1184.65 3 0.45

4 10 62.85 10 1471.45 3 0.95

0.75 1 10 1.95 10 0.1 10 0.2

2 10 30 10 375.1 10 3.2

3 10 59.85 9 687.3 10 12.7

4 10 45.05 8 636 10 48.45

15 0.25 1 10 4.95 4 996 6 4.45

2 10 193.05 1 3591 4 2.7

3 10 623.2 0 – 4 40.2

4 8 746.65 2 2070.9 1 6.5

0.50 1 10 103.2 8 34.7 10 0.3

2 10 880.8 0 – 6 447.2

3 5 752.8 0 – 0 –

4 5 1915.9 0 – 0 –

0.75 1 10 0.1 10 0.1 10 0.1

2 5 1446.45 10 37.35 10 6.1

3 1 486 9 609.9 10 83.65

4 – – 2 817.1 6 1019.75

Table 2 Computational results on MKP instances.

problems (columns “trel” and “tsep”, respectively). Each line of the table refers to specific

values of n, α, and Γ, i.e., the values refer to 30 instances defined by different values of

K in an aggregated way. Figures are computed with respect to the instances solved to

optimality only.

These results show that, although we considered instances of medium size, the number of

nodes is typically quite large (more than 1200, on average), showing that some enumeration
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n α Γ opt time nodes cuts trel tsep

10 0.25 1 30 80.8 1597.0 3103.5 73.6 7.1

2 27 84.0 1398.5 6957.5 78.3 5.7

3 28 55.2 730.3 4960.5 52.6 2.6

4 28 55.2 605.6 4639.6 52.3 2.9

0.50 1 30 62.2 1292.6 5668.2 59.6 2.5

2 23 334.3 2107.1 23262.9 314.1 20.2

3 21 497.3 2207.8 33429.4 475.0 22.3

4 23 667.2 2374.0 41392.0 626.4 40.7

0.75 1 30 0.7 42.1 195.1 0.7 0.0

2 30 136.1 635.9 10553.4 133.9 2.2

3 29 215.2 528.6 16955.0 212.8 2.4

4 28 174.9 264.1 12433.4 173.4 1.5

15 0.25 1 20 146.1 1426.3 6329.8 113.3 32.8

2 15 368.8 2098.3 19669.2 293.5 75.3

3 14 456.6 1612.9 33544.8 399.5 57.1

4 11 973.8 2122.5 53311.2 911.0 62.8

0.50 1 28 44.5 790.7 4955.1 42.1 2.3

2 16 658.5 2300.9 45363.0 632.9 25.6

3 5 1128.6 3365.8 71782.6 1120.4 8.2

4 5 1825.1 2263.0 76708.6 1814.3 10.8

0.75 1 30 0.1 1.3 20.3 0.1 0.0

2 25 202.5 285.7 14262.9 200.3 2.1

3 20 312.1 29.8 7396.3 310.9 1.2

4 8 861.4 7.0 5828.5 858.4 3.0

Table 3 Additional statistics on MKP instances.

is needed for closing the optimality gap, although the number of nodes remains manageable.

Despite the quite large number of separated cuts (more than 20,000, on average), the

time for separation is very small, and accounts for only 5% of the total solution time, the

remaining 95% of the time being spent for solving the relaxation. The average number

of cuts per node is equal to 60, though this figure strongly depends on the size of the

problem, as it is around 15 for instances with n= 10 and grows by one order of magnitude

for n= 15.
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6. Conclusions

In this paper, we considered adjustable robust optimization problems with mixed-integer

wait-and-see decisions and discrete uncertainty set. For this class of problems, we proposed

a novel reformulation in which uncertainty appears in the objective function only. This

allows us to derive a new exact algorithm for this class of problems, and to perform a com-

putational analysis on a facility location problem with full and partial facility disruptions

and on a variant of the multiple knapsack problem. Our computational results show that

our approach is able to solve instances of medium size in a reasonable amount of time and

compares favourably with the current state-of-the-art approaches from the literature.
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Appendix
Appendix A: Convex-hull splitting property

The following theorem is derived, and extended, from Arslan and Detienne (2022).

Theorem 4. Let Y ⊆Πn
j=1[lj , uj ] and let L(xxx) be defined, for xxx∈ {0,1}n as follows,

L(xxx) =

{
yyy ∈Rn

+ : ∀j ∈ {1, ..., n},

{
xj = 1⇒ yj ∈ [α1

j , β
1
j ]

xj = 0⇒ yj ∈ [α0
j , β

0
j ]

}
(72)

with α0
j , α

1
j , β

0
j , β

1
j ∈ {lj , uj}. Then, the following equality holds,

∀xxx∈ {0,1}n, conv(Y ∩L(xxx)) = conv(Y )∩L(xxx) (73)

Proof: First, it is clear that conv(Y ∩L(xxx))⊆ conv(Y )∩L(xxx) for any xxx ∈ {0,1}n. Thus, assume that there

exists α1, ..., αn+1 ≥ 0 and ȳyy1, ..., ȳyyn+1 ∈ Y such that
∑n+1

k=1 αk = 1 and yyy =
∑n+1

k=1 αkȳyy
k ∈ conv(Y ) ∩ L(xxx)

while yyy /∈ conv(Y ∩ L(xxx)). Thus, there exists some k̄ and j̄ such that αk̄ > 0, ȳyyk̄ ∈ Y and ((xj̄ = 1) ∧ (ȳyyk̄
j̄ /∈

[α1
j , β

1
j ])∨ ((xj̄ = 0)∧ (ȳyyk̄

j̄ /∈ [α0
j , β

0
j ])).

We only treat the case where xj̄ = 1, since the case xj̄ = 0 can be treated similarly. We then have four

possibilities:

• α1
j̄ = lj̄ , β

1
j̄ = lj̄ : Then, ȳ

k̄
j̄ /∈ [α1

j̄ , β
1
j̄ ] implies that ȳk̄

j̄ > lj̄ and since yyy ∈L(xxx) we must have yj̄ = lj̄ . Then,

we can write the following,

lj̄ = yj̄ =

n+1∑
k=1

αkȳ
k
j̄ >

∑
k:ȳk

j̄
∈[α1

j̄
,β1

j̄
]

αklj̄ +
∑

k:ȳk
j̄
/∈[α1

j̄
,β1

j̄
]

αklj̄ = lj̄ (74)

which is absurd.

• α1
j̄ = uj̄ , β

1
j̄ = lj̄ : Impossible, unless uj̄ = lj̄

• α1
j̄ = lj̄ , β

1
j̄ = uj̄ : Then, ȳ

k̄
j̄ /∈ [α1

j̄ , β
1
j̄ ] implies ȳk̄ /∈ Y , which violates the assumption.

• α1
j̄ = uj̄ , β

1
j̄ = uj̄ : this case yields a contradiction with the same argument as in the first case.

Remark 4. Special cases of Theorem 4 are L(xxx) = {yyy : yyy ≤xxx}, L(xxx) = {yyy : yyy ≥xxx}, L(xxx) = {yyy : yyy =xxx} and

L(xxx) = {yyy : yj ≥ (1−xj)uj} for binary xxx.


