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Abstract—Early diagnosis of potentially malignant disorders,
such as oral epithelial dysplasia (OED), is the most reliable way
to prevent oral cancer. Computational algorithms have been used
as a tool to aid specialists in this process. In recent years, CNN-
based methods are getting more attention due to its improved
results in nuclei segmentation tasks. Despite these relevant results,
achieving high segmentation accuracy remains a challenging
task. In this paper, we propose an ensemble of segmentation
models to improve the performance of nuclei segmentation in
OED histopathology images. The proposed ensemble consists of
seven CNN segmentation models, which were combined using
three ensemble strategies: simple averaging, weighted averaging,
and majority voting, achieved accuracy of 92.14%, 91.21% and
90.67%, respectively, when applied in OED images. The model’s
performance was also evaluated on three publicly available
datasets and achieved comparable performance to the state-of-
the-art segmentation methods. These values indicate that the
proposed ensemble methods can improve segmentation results
and be used in medical image analysis applications.

Index Terms—Oral Epihtelial Dysplasia, Nuclei Segmentation,
Histological Image Processing, CNN Ensemble

I. INTRODUCTION

Oral epithelial dysplasia (OED) refers to a disordered
growth in the epithelium of the oral cavity that leads to
changes in cellular properties such as size and shape. It is a
common type of precancerous lesion and can be categorized as
mild, moderate, or severe [1]. Several studies in the literature
have reported OED to have a transformation rate to oral
squamous cell carcinoma ranging from 6-36%. The diagnosis
for these lesions is often performed through microscopic
analysis of the lesion size and the intensity of morphological
alterations in tissue nuclei. However, the irregular aspect of
cell nuclei poses a challenge to this analysis [2].

The development of digital applications for histological
images has enabled specialists to obtain relevant data for a
thorough investigation, assisting them in decision-making [3].
These computer-aided diagnosis (CAD) systems provide quan-
titative analysis of a large number of data and features [4]. The
CAD systems involve a series of steps ranging from improving

signal-to-noise ratio, segmentation, feature extraction, and
classification. Segmentation is a crucial step, as it allows the
identification of lesion structures that will be analyzed in sub-
sequent steps using feature descriptors and classifiers [4]. In
the case of OED images, this can be a challenging process due
to the growth of the connective tissue, which can invade the
epithelial tissue and make nuclei segmentation complex [5].

Recently, deep learning methods have shown significant
progress in nuclei segmentation. Convolutional neural network
models (CNNs) are among the most popular deep learning
approaches due to their ability to achieve good results in
image analysis [6]. In Dos Santos et al.’s study [7], a U-Net
based approach was employed along with data augmentation
to segment cell nuclei in a set of 120 OED histological
images. This methodology achieved results with accuracy,
precision, Dice coefficient, and Jaccard index values of 0.879,
0.793, 0.820, and 0.699, respectively. Shephard et al. [8]
employed the HoVer-Net CNN model along with post pro-
cessing operations to segment cell nuclei in 43 whole-slide
OED images, including 14 mild, 13 moderate, 11 severe,
and 5 healthy tissues. The method yielded high segmentation
accuracy, with a Dice coefficient and Jaccard index of 0.839
and 0.694, respectively, for cell nuclei in OED lesions. Silva
et al. [9] presented an alternative method for OED nuclei
segmentation, employing the Mask R-CNN in combination
with the ResNet50 backbone to perform the segmentation task.
The methodology was applied to an image set of 296 OED
images, with 74 images for each class, achieving a nuclei
segmentation accuracy of 89.31%.

Although deep learning methods have shown good results
in various applications, overfitting and high variations in the
results generated by CNNs remain recurrent problems [2],
[10]. To mitigate these potential errors, ensembles have been
explored as a solution. In this study, we propose a ensemble
of CNN models for the segmentation of cell nuclei in his-
tological images of OED. Our study has the following main
contributions:



• Evaluation of the performance of CNN models for the
segmentation of cell nuclei;

• Study of ensemble segmentation strategies to improve the
results achieved by the individual models;

• Analysis of the results obtained by the CNN models and
ensemble systems using evaluation metrics;

• Investigation of the proposed method and analysis of
other studies proposed in literature on public image
datasets.

II. METHODOLOGY

The proposed methodology involved a segmentation process
that employed CNNs, post processing and ensemble strategies,
as presented in Fig. 1. The system was developed using the
Python and MATLAB® programming languages. The experi-
ments were performed on a computer equipped with a Ryzen
5 CPU, 64 GB of RAM, and an Nvidia RTX 2070 GPU with
12 GB of VRAM.

Fig. 1: Flowchart of the main stages employed to segment
nuclear structures on OED tissues.

A. Image Dataset

The image dataset was built from 30 H&E-stained mice
tongue tissue sections that were previously exposed to a
carcinogen during two experiments conducted between 2009
and 2010. These experiments were approved by the Ethics
Committee on the Use of Animals under protocol numbers
038/09 and A016/21 at the Federal University of Uberlândia,
Brazil.

The histological slides were digitized using the Leica
DM500 optical microscope with a magnification of 400×. A
total of 456 region of interest (ROI) images were stored in
the TIFF format using the RGB colour model, 8-bit channel
depth, and dimensions of 450 × 250 pixels. This resulted in
114 raw images for each class. Following the methodology
described by Lumerman et al. [11], the images were classified
into healthy mucosa, mild, moderate, and severe OED by
a specialist. The cell nuclei were manually marked by the
specialist, and the resulting labels were evaluated and validated
by a pathologist, defining the gold-standard annotations used
to evaluate the methodology.

In order to evaluate the proposed methodology in relation
to the computational model, this study also employed the
following datasets: CryoNuSeg [12], MoNuSeg 2018 [13],
and GlaS [14]. CryoNuSeg includes 30 images of size 512 ×
512 pixels of 10 human organs. The MoNuSeg 2018 dataset
contains 51 tumors images from different organs and with size
of 1000 × 1000 pixels. GlaS is composed of 165 images of

size 775 × 522 pixels from colorrectal cancer tissues. These
databases were chosen to evaluate the proposed method on
public domain databases as well as to analyze its performance
in relation to values obtained in the literature.

B. Segmentation

On this study, the CNN models chosen for the segmentation
task were FPN, Mask R-CNN, U-Net and PSPNet, based
on relevant segmentation results in literature [15]–[17]. The
FPN model takes a single-scale image as input and outputs
proportionally sized feature maps at multiple levels in a fully
convolutional fashion [18]. The construction of the pyramid
involves a bottom-up pathway, a top-down pathway, and lateral
connections. The bottom-up pathway uses the feature maps
generated by a backbone to create hierarchical maps at differ-
ent scales. The top-down pathway generates higher resolution
features by upsampling feature maps from higher pyramid
levels. These features are then enhanced via lateral connections
that merge feature maps of the same spatial size from the
bottom-up pathway and the top-down pathway. The network
architecture is depicted in Figure 2. An FPN takes advantage of
the hierarchical and multi-scale nature of convolutional neural
networks to generate useful features for object segmentation
at different scales [19].

Fig. 2: Illustration model of the FPN architecture.

The Mask R-CNN model [20] is a framework designed for
object detection and instance segmentation, which has shown
promising results in medical image segmentation [21], [22].
The model is composed of three main components: backbone,
feature pyramid network (FPN) and region proposal network
(RPN), as depicted in Fig. 3.

First, convolutional layers from ResNet50 were used to
build a FPN structure. The features obtained by the FPN are
given as the input to a RPN, which identifies candidate objects.
A convolutional layer of size 3×3 was employed in each layer
of the FPN and the resulting values were employed in two
fully connected layers, generating the bounding boxes for each
region. Then, a fully connected layer was used on the object
feature maps to define the binary masks for each nucleus in
the histological image.

U-Net architecture consists of a convolution path and a
deconvolution path, where the convolution path follows the
typical architecture of a convolutional network [23]. It uses
the convolutional layers of the backbone model to extract
features from the images. In the deconvolution path, the
image is upsampled to its original size, allowing precise
localization of high-resolution features. To do this, every step
of this path consists of an upsamplig of the feature map, a



Fig. 3: Architecture illustration of the Mask R-CNN employed
in the OEDs segmentation process.

concatenation with the correspondingly cropped feature map
from the convolution path, and two kernel convolutions, each
followed by a ReLU. The cropping is necessary because of the
loss of border pixels in every convolution. At the final layer
a 1x1 convolution is used to map each feature vector to the
desired number of classes. This networks architecture is shown
in Fig. 4. In this study, we employed different backbones to
evaluate the U-net.

Fig. 4: Illustration model of the U-Net architecture [Source:
Ronneberger et al. [23]].

PSPNet is a model that comprises a convolution path and
a decoding path [24]. The convolution path extracts image
features from different levels by employing layers from the
backbone model and creating a feature pyramid at different
scales. The decoding path generates a segmentation output by
aggregating these features at different scales, and each step in
the decoding path expands the feature maps, concatenates them
with the corresponding feature map from the convolution path,
and performs two convolutions. This concatenation improves
segmentation by combining information from different scales,
and the feature maps generated by the decoding path are
concatenated with the maps from the encoder path, aggregating
features from various scales. Finally, the classification layer
performs semantic segmentation on the feature maps. Fig. 5
illustrates the architecture of the PSPNet model.

In this study, the CNN models were trained using the
ResNet50 and the MobileNetV3 backbone architectures, with
the exception of the Mask R-CNN model, which used only
the ResNet50. These backbone models were chosen due to
promissing characteristics in segmentation tasks, as described
in the literature [25], [26]. All models were pre-trained on the
ImageNet dataset and fine-tuned to our dataset. The images
were split on the proportion of 60% for training set, 10% for
validation set and 30% for test set, totalling 272, 46 and 138

Fig. 5: PSPnet model architecture used for nucleus segmenta-
tion. Image adapted from [24].

images for each set, respectively. During the fine-tuning stage,
the models were trained with 40 epochs, with 150 iterations for
each epoch, learning rate of 0.001, and a momentum value of
0.9, using the Nadam optimizer. All models were trained using
these values, to ensure consistency at this stage. Different
values were tested during this stage to identify the optimal
combination between the structures and background of the
investigated images.

C. Post Processing

The resulting images may contain incomplete nuclei regions
or small artifacts. To address this issue, morphological opera-
tions were applied. In order to close the contour of the nuclei,
the dilation operation was performed using a cross-shaped
structuring element with a size of 3×3 pixels. Subsequently,
a hole-fill function was used on the binary objects. Then,
an erosion operation with the structuring element of 3×3
pixels was applied. Finally, objects with an area smaller than
30 pixels were classified as background regions and were
removed from the masks. The parameters used in this stage
were chosen empirically.

D. CNN Ensembles

CNN ensembles are approaches used to combine models
results and have proven to be a promising approach for
improving image segmentation [27]–[29]. The combination
of different CNN models can generate a more accurate and
robust final segmentation. The ensemble strategies used in this
study were the simple averaging, weighted averaging, and the
majority voting.

Simple averaging is a widely used combination technique
in segmentation problems with multiple CNN models. In this
strategy, the final decision is obtained by averaging the results
of individual models [30]. If the sum result is higher than the
average, the pixel is classified as a region of interest; other-
wise, it is classified as a background region. Simple averaging
is especially useful for binary data. The mathematical formula
for the simple averaging is given by Eq. 1.

A(x) =
1

N

N∑
i=1

ai(x), (1)

where A(x) is the final result, N is the number of individual
models and ai(x) is the output generated by the i-th model.

Weighted averaging is an extension of the simple averaging
strategy, in which the results of individual models are averaged



with different weights [31]. The weights can be assigned
according to the model’s performance on a validation set or
the model’s complexity. This ensemble method is defined by
Eq. 2.

WA(x) =

N∑
i=1

wiai(x), (2)

where WA(x) is the final result, ai(x) is the output generated
by the i-th model and wi is the weight assigned to model ai.

Majority voting takes into account the most voted class by
each model. In this method, binary images are combined by
counting votes for each class at each pixel, resulting in a final
binary image where each pixel is assigned to the class with
the majority of votes [32]. This voting rule is given by Eq. 3.

M(x) =

{
1 if

∑N
i=1 ai(x) > N

0 otherwise
, (3)

where M(x) is the final output, N is the number of models
and ai(x) is the binary image generated by model i.

E. Evaluation Metrics

The segmentation method was evaluated by comparing
the result image with the gold-standard and calculating the
overlapping regions [33]. The evaluation metrics employed
were accuracy (ACC), sensitivity (SE), specificity (SP ) and
Dice coefficient(DC) [34], [35].

The metric of ACC was used to quantify the amount
of pixels correctly segmented as nuclei and background in
relation to all pixels in the image. The SE measures how
well the method segmented the nuclei regions, while the SP

measures the proportion of pixels correctly identified as the
background region. The DC measure was used to evaluate the
overlapping regions between the mask outputs and the gold-
standard.

III. EXPERIMENTAL RESULTS

Fig. 6 displays the masks generated by the different models
on an randomly chosen mild OED image. On this image,
the green regions indicate FP areas and red regions indicate
FN. The CNN architectures and backbones were combined
as follows: Mask R-CNN - ResNet50 (Model 1), PSPnet -
ResNet50 (Model 2), PSPnet - MobileNetV3 (Model 3), FPN
- ResNet50 (Model 4), FPN - MobileNetV3 (Model 5), U-Net
- ResNet50 (Model 6) and U-Net - MobileNetV3 (Model 7).
Model 1 was able to identify nuclear structures and generated
results similar to the gold-standard. However, it presented
regions of FP in the form of artifacts in the image and regions
of FN in the form of unidentified nuclei. Models 2 and 3
produced FN regions, resulting in the degradation of nuclei
edges and the limited segmentation of nuclei in the case of
Model 3. Similarly to Model 1, Models 4 and 5 identified
and segmented cellular nuclei, with results close to the gold-
standard, but with some FN regions and degraded contours
on some structures. Models 6 and 7 generated numerous FP
regions, segmenting regions near nuclei as areas of interest

and showing artifacts. It is important to note that Models 1,
4, and 5 yielded visually similar outcomes.

(a) Gold-standard (b) Model 1

(c) Model 2 (d) Model 3

(e) Model 4 (f) Model 5

(g) Model 6 (h) Model 7

Fig. 6: Visual comparison between the gold-standard and
nuclei masks generated by CNN models. Green region indicate
FP and red regions indicate FN.

Table I presents a quantitative analysis of the method’s
performance on the gold-standard images, showing the average
values obtained with the metrics for the OED classes. It is
noteworthy that Model 4 obtained the highest values, with
ACC = 91.95% and DC = 0.87. Models 1, 5, and 6 presented
ACC values close to each other, but with a drop in the DC

measure. It is important to highlight the relationship between
Models 4 and 5, as both models are based on FPN, and
between Models 4 and 1, as Mask R-CNN is an extension of
FPN. Therefore, these close results may be a result of this rela-
tionship. The values yelded by Models 2, 3 and 7 were lower,
with ACC of 84.72%, 80.83%, and 85.48%, respectively.
The results suggest that models using ResNet50 backbone
achieved higher values than models employing MobileNetV3.
Furthermore, it is observed that models based on FPN obtained
better results according to the evaluation metrics.

Fig. 7 shows the segmentation masks obtained by each
ensemble approach. Visually, the results obtained by the sim-
ple averaging present outcomes similar to the gold-standard,
with few occurences FP (indicated by green regions) and FN
(red regions). However, some deformations can be observed
at some nuclei borders. In contrast, the weighted averaging
and majority voting present nuclei with deformed contours,
unsegmented objects, and the presence of small artifacts in



TABLE I: Evaluation of CNN models for segmentation of
nuclei in histological tissues.

Model ACC (%) SE (%) SP (%) DC

Model 1 89.49 84.55 91.83 0.84
Model 2 84.72 81.47 86.64 0.77
Model 3 80.83 72.84 84.76 0.71
Model 4 91.95 87.99 92.76 0.87
Model 5 89.32 82.79 92.55 0.83
Model 6 89.31 78.50 94.67 0.83
Model 7 85.48 87.88 82.97 0.80

the images.

(a) Gold-standard (b) Simple averaging

(c) Weighted averaging (d) Majority voting

Fig. 7: Visual comparison between the gold-standard and
nuclei masks generated by the ensemble methods.

Table II, depicts the evaluation values obtained for the
ensemble strategies in comparison to the gold-standard. The
results show that the simple averaging approach yielded higher
values than the other methods, achieving ACC of 92.14% and
DC of 0.86. The weighted averaging resulted in ACC and DC

values of 91.21% and 0.85, respectively. The majority voting
obtained 90.57% and 0.85 for these metrics. It can be observed
that the ensemble approaches outperformed many of the indi-
vidual CNN models in terms of ACC . The weighted averaging
and majority voting achieved higher values compared to all
CNN models, except for Model 4. The evaluated ensemble
strategies provided SE values higher than most of the models,
indicating that the detection of nuclei region improved. These
ensemble methods shown DC values higher than most of the
individual models.

TABLE II: Evaluation of ensemble strategies.

Ensemble Strategy ACC (%) SE (%) SP (%) DC

Simple averaging 92.14 88.12 91.94 0.86
Weighted averaging 91.21 86.82 91.06 0.85
Majority Voting 90.67 84.62 89.94 0.85

The simple averaging method was evaluated on three dis-
tinct datasets, namely, CryoNuSeg [12], MoNuSeg 2018 [13],
and GlaS [14]. This evaluation is presented in Table III, which
shows results obtained by algorithms present in the literature.
For CryoNuSeg, the proposed method achieved a DC value
of 0.86, surpassing Mahbod et al.’s method [12] and showing
comparable results with Hassan et al. [36] and Sitnik et al.

TABLE III: Evaluation between proposed ensemble strategy
and segmentation methods in the literature (DC).

Model CryoNuSeg MoNuSeg 2018 GlaS
Mahbod et al. [12] 0.78 - -
Sitnik et al. [37] 0.85 - -
Hassan et al. [36] 0.86 0.89 -
Li et al. [39] - 0.79 -
Liao et al. [38] - 0.69 0.85
Sirinyukunwattana et al. [14] - - 0.87
Proposed - Simple averaging 0.86 0.86 0.86

[37]. Similarly, for the MoNuSeg 2018 dataset, the ensemble
achieved a value higher than the methods proposed by Liao et
al. [38] and Li et al. [39], but lower compared to the method by
Hassan et al. [36]. For GlaS, the proposed method presented
DC value of 0.86, being comparable to the algorithms of
Liao et al. [38] and Sirinyukunwattana et al [14]. Overall, the
proposed ensemble model demonstrated similar performance
to state of the art algorithms.

IV. CONCLUSIONS

This study proposed a method for cell nuclei segmenta-
tion in histological images of OED using CNN ensembles.
Seven CNN models were trained to segment nuclei regions
and morphological operations were used to remove artifacts.
Three ensemble strategies were employed to improve the
models results. The ensemble systems improved the CNNs
segmentation, achieving ACC of 92.14%, 91.21%, and 90.57%
for simple averaging, weighted averaging, and majority vot-
ing, respectively, demonstrating the potential of the proposed
methodology to minimize segmentation errors. When the
method was applied to datasets in other domains, it was able
to provide relevant results compared to values present in the
state of the art.

Furthermore, a comparison of the results with those of pub-
lic datasets revealed that the proposed segmentation ensembles
achieved comparable results with existing methods from the
literature. However, there is still room for improvement in
the proposed method, and future studies will explore the
impact of data augmentation on the CNNs segmentation.
Additionally, other ensemble approaches and CNN models will
be investigated for further improvement of the segmentation
results.

The results of this study can be used to assist pathologists
during the histological analysis of OED lesions. The proposed
method accuracy on cell nuclei segmentation on OED histo-
logical images shows that the development CAD systems can
improve the accuracy of nuclei segmentation on OED lesion
images.
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