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We consider the statistical inference problem of recovering an unknown perfect matching, hidden in a
weighted random graph, by exploiting the information arising from the use of two different distributions for
the weights on the edges inside and outside the planted matching. A recent work has demonstrated the existence
of a phase transition, in the large size limit, between a full and a partial-recovery phase for a specific form of the
weights distribution on fully connected graphs. We generalize and extend this result in two directions: we obtain
a criterion for the location of the phase transition for generic weights distributions and possibly sparse graphs,
exploiting a technical connection with branching random walk processes, as well as a quantitatively more precise
description of the critical regime around the phase transition.
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I. INTRODUCTION

A matching of a graph is a subset of its edges such that
each node belongs to at most one edge of the matching; in a
perfect matching all the nodes are covered in this way [1]. In
a weighted graph one defines the weight of a matching as the
sum of the weights on its edges, and one can try to minimize
or maximize this total weight under the (perfect) matching
constraint [2]. This extremization is a problem of combina-
torial optimization, widely studied in mathematics, computer
science, and also in statistical physics. In this paper we study
the planted matching problem, a statistical inference problem
where one hides (plants) a perfect matching into a graph, the
goal being to find it back. Planted matching problems arise in
applications such as particle-tracking systems used in experi-
mental physics [3]; the present paper concentrates on a more
fundamental aspect, namely the mathematical description of
the peculiar type of phase transition this inference problem
exhibits.

Statistical inference on graphs and networks is an area
of recent interest including problems such as community
detection [4], group testing [5], planted Hamiltonian cycle
recovery [6], certain types of error-correcting codes [7], and
many others. All these problems share the common pattern of
a signal being observed indirectly via the edges and weights
of a graph, with the goal to infer the signal back from these
observations. Interestingly as a function of the signal-to-noise
ratio and in the limit of large system sizes one encounters
sharp thresholds (phase transitions). A classical network-
inference problem presenting a phase transition is the commu-
nity detection in graphs created by the stochastic block model
(SBM) [4]. In the SBM on sparse graphs a phase transition
happens between a no-recovery phase where an estimation
of the signal better than a random guess is impossible and
a partial-recovery phase where a positive (but bounded away

from one) correlation with the signal can be obtained. This
phase transition can be of second or first order depending on
the details of the model, an interesting connection was put
forward between phase transitions of first order and existence
of algorithmically hard phases [4]. A typology of phase transi-
tions in problems where the detectability transition (from zero
correlation to positive one) appears was recently presented in
Ref. [8]. In the SBM, in order to obtain full recovery of the
signal, i.e., a correlation with the signal converging to one, the
average degree of the graph has to diverge as the logarithm of
its size [9]. In low-density-parity-check error-correcting codes
[7], another widely studied example of inference problem on
sparse graphs, there is also a first order phase transition but
this time from the partial-recovery phase to the full-recovery
phase where the signal (codeword) can be reconstructed with
an error that vanishes as the system size diverges.

Here we study the planted matching problem, where a per-
fect matching is hidden in a graph by adding edges to it. The
information about which edges were added comes through the
distribution of the weights, with different distributions on the
planted and nonplanted edges. This problem was introduced in
Ref. [3] as a toy model in a particle-tracking problem and was
studied numerically by solving the corresponding recursive
distributional equations for a particular case of the distribu-
tion of weights, suggesting a phase transition between full-
recovery and partial-recovery phases. More recently, Ref. [10]
rigorously analyzed another special case of the distribution of
weights, and proved the existence of such a phase transition.

We generalize and extend these previous results in several
directions (at the level of rigor of theoretical physics). We
locate the recovery phase transition for generic weight distri-
butions, considering also a sparse regime for the edges added
to the planted configuration. As in Ref. [3] we use the standard
cavity method related to the belief propagation approximation
[11]. Our key contribution is an analytical insight into how the
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FIG. 1. Phase diagram of the planted matching problem with ex-
ponential planted weights on sparse graphs, exhibiting full-recovery
(FR) and partial-recovery (PR) phases. The red area corresponds
to the phase where FR is achievable by the simple leaf removal
procedure and is delimited by the γ = 1 condition (red line). The
blue area is the PR phase enclosed by the vanishing velocity criterion
(blue line), the white domain corresponding to full recovery. The red
dots have been obtained from the numerical resolution of the RDEs
(29) by a population dynamics algorithm with 106 fields and mark
the limit of existence of a nontrivial solution.

solution behaves, which allows us to derive a rather simple
closed-form expression for the threshold, Eq. (45), that holds
for generic distribution of weights and both sparse and fully
connected graphs (the threshold for the sparse case converges
to its fully connected limit exponentially fast in the average
degree; see, for example, the phase diagram in Fig. 1). The
results of Ref. [10] are also based on the cavity method, but
apply only to fully connected graphs and only to the exponen-
tial distribution of weights on the planted edges. In this partic-
ular case the corresponding recursive distributional equations
reduce into a closed system of differential equations. Instead
we obtain the generic expression for the threshold by noticing
a relation between the solution of the recursive distribution
cavity equations and properties of branching random walk
processes. The latter, and more generically the phenomenon of
front propagation for reaction-diffusion equations, appear in a
variety of context and have been extensively studied both in
physics and in mathematics [12–22]; the precise way in which
this connection arises here is nevertheless, as far as we know,
original in the context of mean-field inference problems.

Both our work and Ref. [10] show that the recovery
threshold in the planted matching problem is of a rather
different nature than the thresholds known in the stochastic
block model, error-correcting codes, or others discussed in the
literature. Indeed it separates partial and full-recovery phases
while occurring at a finite average degree, and there is no sign
of a computational gap between the information theoretically
optimal reconstruction accuracy and the one achievable by
efficient algorithms. Another aspect in which this transition
differs from more usual ones is its thermodynamic order:

for the specific case studied in Ref. [10] we provide a
quantitatively more precise description of the critical regime
around the phase transition, Eq. (88), showing that it is of
infinite order in the usual thermodynamic classification (all
the derivatives of the order parameter vanish at the transition
point).

The rest of the paper is organized as follows. In Sec. II we
define more explicitly the problem under study and introduce
two statistical estimators [block and symbol, aximum a poste-
riori (MAP)] of the planted matching. In Sec. III we present
the main equations (belief propagation and their probabilistic
description) that governs the behavior of the problem. In
Sec. IV we derive our first main result, namely, the location
of the phase transition for arbitrary weight distributions (for
the block MAP estimator), which is illustrated in Sec. V on
several examples. Our second main result, i.e., a quantitatively
more precise description of the critical regime around the
phase transition, is explained in Sec. VI. We then study
numerically in Sec. VII the threshold of the phase transition
for the symbol MAP estimator, while conclusions and per-
spectives for future work are presented in Sec. VIII. Some
more technical details are deferred to a pair of Appendices.

II. DEFINITIONS

A. Planted random weighted graphs

We shall consider weighted graphs denoted G0 =
(V0, E0,w), where V0 = {1, . . . , N} is the set of N vertices,
N being an even integer, E0 the set of edges (unordered pairs
of distinct vertices of V0), and w = {we:e ∈ E0} a collection
of real weights assigned to each edge of the graph. We endow
the set of weighted graphs with a probability distribution, the
generation of G0 from this law corresponding to the following
steps:

(1) One first chooses a perfect matching M of V0 uni-
formly at random among the (N − 1)!! possible ones, in other
words M contains N/2 edges, each vertex of V0 belonging to
exactly one edge of M .

(2) The edge set E0 of G0 is made of the disjoint union of
M and additional edges chosen at random: each of the

(N
2

)−
(N/2) possible edges not already included in M is added to
E0 with probability c/N .

(3) The weights we are independent random variables,
with an absolutely continuous distribution given by the den-
sity p̂ if e ∈ M and p if e ∈ E0 \ M .

We shall call planted (resp. nonplanted) edges those in M
(resp. in E0 \ M ). The parameters of this random ensemble
of weighted graphs are thus the even integer N , the parameter
c controlling the density of nonplanted edges, and the two
distributions p̂ and p for the generation of the weights of the
planted and nonplanted edges. In the formula the probability
to generate a graph G0, given the choice of M , translates from
the above description as

P (G0|M ) =
∏
e∈M

p̂(we)
∏

e∈E0\M

p(we)

×
( c

N

)|E0|− N
2
(

1 − c

N

)(N
2 )−|E0|

I(M ⊆ E0),

(1)
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where here and in the following I(A) denotes the indicator
function of the event A. Note that the number of nonplanted
edges concentrate in the large size (thermodynamic) limit
N → ∞ around its average value cN/2, assuming c remains
fixed in this limit, and that these edges form essentially an
Erdős-Rényi random graph of average degree c (modulo the
exclusion of the planted edges).

The model studied in Refs. [3,10] corresponds to a dense,
or fully connected, version of the model defined above, in
which G0 is a complete weighted graph, E0, containing all the
possible edges between the N vertices. In order to have a well-
defined thermodynamic limit in this dense case it is necessary
to rescale with N the weights on the nonplanted edges, i.e., to
use an N-dependent distribution p. The simplest way to per-
form this rescaling is to use p(w) = Q(w/N )/N , where Q is a
density with a support included in the nonnegative reals, and a
positive density Q(0) > 0 at the origin [3,10,23]; without loss
of generality we assume Q(0) = 1. The thermodynamic limit
of this dense model is then equivalent to the large degree limit
of the sparse one, c → ∞ after N → ∞, if one uses for the
distribution p of the nonplanted edges the uniform distribution
on the interval [0, c]. We shall thus study the richer sparse
model, with finite c, and take the large degree limit when
needed in order to compare our results with those of the dense
case.

B. A statistical inference problem

The question we shall investigate in the following is
whether the observation of a graph G0 generated according
to the procedure above allows us to infer the hidden matching
M , assuming the observer knows the parameters c, p, and p̂
of the model. In this setting all the information the observer
can exploit to perform this task is contained in the posterior
probability P (M |G0). From the expression (1) of the graph
generation probability, and the knowledge that the prior prob-
ability on M is uniform over the set of all perfect matchings,
Bayes’ theorem yields immediately the following expression
for the posterior:

P (M |G0) ∝
∏
e∈M

p̂(we)
∏

e∈E0\M

p(we)I(M ⊆ E0)Ipm(M ),

where the symbol ∝ hides a normalization constant indepen-
dent of M , and the last term is the indicator function of the
event “M is a perfect matching.” For notational simplicity it
is convenient to encode a set of edges M ⊆ E0 with binary
variables, m = {me:e ∈ E0} ∈ {0, 1}E0 , where me = 1 if and
only e ∈ M , and rewrite the posterior as

P (m|G0) ∝
∏
e∈E0

[
p̂(we)

p(we)

]me N∏
i=1

I

(∑
e∈∂i

me = 1

)
, (2)

where ∂i denotes the set of edges incident to the vertex i.
The observer will now compute an estimator M̂ (G0), this
function of the observations being “as close as possible” to the
hidden matching M . The optimal estimator actually depends
on which notion of “closeness” between M and the estimator
M̂ (G0) is used.

If the measure of the distance between them is simply
the indicator function I(M �= M̂ (G0)), then the optimal

estimator, optimal in the sense that it minimizes this distance
averaged over all realizations of the problem, is the one
maximizing the posterior,

M̂b(G0) = argmax
m

P (m|G0), (3)

where we slightly abused notations and used freely the equiv-
alence between m and M . Following the nomenclature of
error-correcting codes [7] we shall call this the block maximal
a posteriori (MAP) estimator, hence the subscript b. As we
shall detail below the estimator M̂b is the perfect matching of
G0 which minimizes the sum of some effective weights on the
edges it contains.

If instead the distance to be minimized is the total number
of misclassified edges, |M �M̂ (G0)|, with � the symmetric
difference between sets, or equivalently the Hamming dis-
tance between the binary strings m and m̂(G0) encoding them,
then the optimal estimator is the so-called symbol MAP one,
denoted M̂s(G0), defined by the binary string m̂(G0) where,
for all the edges e ∈ E0,

m̂e(G0) = argmax
me

Pe(me|G0), (4)

with Pe the marginal of the posterior probability (2) for the
edge e. Note that this estimator is not necessarily a perfect
matching, nevertheless it is the one that minimizes the dis-
tance |M �M̂ (G0)| on average over all realizations of the
problem.

For future use let us define the (reduced) distance between
the planted matching M and an arbitrary estimator M̂ (i.e., a
subset of the edge set E0) as

�(M , M̂ ) = 1

N
|M �M̂ | (5)

= 1

N

∑
e∈M

I(m̂e = 0) + 1

N

∑
e∈E0\M

I(m̂e = 1). (6)

If M̂ contains exactly N/2 edges, in particular if it is a perfect
matching, this expression can be simplified as the two terms
contribute in the same way (there are as many false positive as
true negative errors in the identification of the edges), then

�(M , M̂ ) = 2

N

∑
e∈M

I(m̂e = 0). (7)

Our goal in the rest of the article is to discuss the quality
of the estimators defined above, in the thermodynamic limit
N → ∞, as a function of the parameters of the model. Fol-
lowing the studies [3,10] one expects to find phase transitions
between full-recovery phases, in which all but a vanishing
fraction of the edges of M can be recovered from the ob-
servation of G0, characterized by a vanishing average recon-
struction error E[�] = 0, and partial-recovery phases where
a positive fraction of the edges will be misclassified, E[�] >

0. Before entering the actual computations let us make two
simple remarks in order to give the reader a first intuitive idea
of the effect of the parameters on the inference difficulty. (1)
The identification of the planted edges will be easier if the
distributions p and p̂ are less similar one to the other; in the
extreme cases where p = p̂ the weights contain absolutely no
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information on M , while if p and p̂ have disjoint supports
M can be identified by a simple inspection of the weights on
the edges. (2) For a fixed choice of p and p̂ the parameter c
corresponds to a noise level: if c is very small E0 contains
essentially only the sought-for edges of M , increasing it the
latter are hidden in the confusing nonplanted edges.

III. CAVITY METHOD EQUATIONS

A. A first pruning of the graph

Before proceeding further, let us observe that the inference
problem can be in general reduced in size after some simple,
preliminary observations. Following the remark (1) in a less
drastic case, suppose that the supports of p and p̂ are different
(but not necessarily disjoint). Then an edge e bearing a weight
we in the support of p but not in the one of p̂ is, without
doubt, nonplanted; conversely e is certainly planted if we is
in the support of p̂ but not in the one of p. All the edges
identified in this way can be eliminated from G0; moreover
the two vertices belonging to an edge identified as planted can
also be eliminated, as well as the other edges incident to them,
that cannot be planted by definition of a perfect matching.

To put these remarks on a quantitative ground let us denote
supp( p̂) := {w ∈ R: p̂(w) > 0} (more precisely the closure
of this set) the support of the distribution p̂, and similarly
supp(p) := {w ∈ R:p(w) > 0} the support of p. We define

� : = supp(p) ∩ supp( p̂), (8a)

μ : =
∫

�

p(w) dw, (8b)

μ̂ : =
∫

�

p̂(w) dw. (8c)

A nonplanted edge e has weight we �∈ � and can thus be
identified, with probability 1 − μ. Similarly, a planted edge e
will have we �∈ � with probability 1 − μ̂, and, in this case, it
is surely an element of M . We will denote

M0 := {e ∈ E0:we ∈ supp( p̂) \ supp(p)} (9)

the set of planted edges immediately recognizable by means of
these simple considerations. The edges in M0 can be removed
from the graph, alongside with their endpoints and all edges
incident to them. After this pruning process, the obtained
graph has, on average and in the large N limit, μ̂N surviving
vertices, each of them with degree 1 + Z, Z being a Poisson
random variable of mean γ := cμμ̂ (each nonplanted edge is
present with probability μ c

N , but in a graph with μ̂N vertices).
The distribution of the weights of the surviving edges is

now conditioned to the fact that their values are in �. On the
new pruned graph, therefore, the weight distributions are

P(w) := 1

μ
p(w)I(w ∈ �), (10a)

P̂(w) := 1

μ̂
p̂(w)I(w ∈ �) (10b)

for the nonplanted and planted edges, respectively. We will
denote G = (V , E ,w) the graph obtained after this pruning,
with V ⊆ V0 and E ⊆ E0 the new vertex and edge sets.

B. The belief propagation equations

Here we present the belief propagation algorithm that was
used in Ref. [3] for the planted matching problem. Let us
introduce a positive parameter (fictitious inverse temperature)
β, and consider the following probability distribution over the
configurations m = {me:e ∈ E } ∈ {0, 1}E of binary variables
on the edges of a weighted graph G ,

ν(m) ∝ e−β
∑

e∈E meωe
∏
i∈V

I

(∑
e∈∂i

me = 1

)
, (11)

where we introduced effective weights ωe on the edges, that
are computed from the observed weights we as ωe = ω(we),
with

ω(w) := − ln
P̂(w)

P(w)
. (12)

To lighten the notation we kept implicit the dependency on β

and G of the probability distribution ν; for β = 1 it coincides
with the posterior defined in (2), when β → ∞ it concentrates
on the configurations maximizing the posterior, these two
values of β allow us thus to deal with the symbol and block
MAP estimators, respectively.

The probability distribution ν defined in Eq. (11) has the
form of a Gibbs measure over all weighted perfect matchings
of the graph G . The exact computation of its marginals is
an intractable task in general; we shall instead study it in an
approximate way, using the belief propagation (BP) algorithm
(see, for instance, Ref. [11] for a general introduction to BP
as well as chapter 16 therein for its application to matching
problems), that is conjectured to provide an asymptotically
exact description in the large size limit for these sparse ran-
dom graphs. One can indeed consider Eq. (11) as a graphical
model and construct a factor graph starting from the graph G ,

=⇒

In this factor graph representation, each edge e is associated
to a variable node , corresponding to the variable me. Each
variable node is attached to two “function nodes” located on
the vertices of the original graph. Such function nodes express
the constraint that the variables on the neighbor variable nodes
have to sum to 1. Finally, a different kind of function node
is attached to each variable node, corresponding to the “local
field” term e−βωe in the measure (11).

The BP equations are then obtained by introducing “mes-
sages” on the edges of this factor graph, that mimic the
marginal probabilities in amputated graphical models and
would become exact if the factor graph were a tree. For
the model at hand these messages are of the form νi→e(m),
from a vertex i to an edge e = (i, j), and obey the following
equations (one for each directed edge of the graph),

νi→e(m) ∝
∑

{mẽ}ẽ∈∂i\e

I

⎛⎝m+
∑

ẽ∈∂i\e

mẽ = 1

⎞⎠ ∏
ẽ = (r, i)
ẽ ∈ ∂i \ e

νr→ẽ(mẽ) e−βmẽωẽ .

(13)
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We adopt the convention
∑

a∈A f (a) = 0 and
∏

a∈A f (a) = 1
if A = ∅ for any function f . Pictorially, Eq. (13) can be
rendered as

i
ui

u

v

vi

νi→(ij)

e−βωui

e−βωvi

νu→(ui)

νv→(vi)

where the arrows indicate the directions of “propagation” of
the messages.

As the variables are binary, me ∈ {0, 1} for each e ∈ E ,
the messages can be conveniently parametrized in terms of
“cavity fields” hi→e, one real number for each directed edge,
as

νi→e(m) := eβmhi→e

1 + eβhi→e
, (14)

so that the BP equations become in terms of the cavity fields:

hi→e = − 1

β
ln

⎛⎝ ∑
ẽ=(r,i)∈∂i\e

e−β(ωẽ−hr→ẽ )

⎞⎠. (15)

Once a solution of the set of BP equations has been found
(for instance, by iterating them starting from a random or
zero initial condition until convergence to a fixed point is
reached), the BP approximation of the marginal probability
of the variable me on the edge e = (i, j) is given by

νe(m) = eβm(hi→e+h j→e−ωe )

1 + eβ(hi→e+h j→e−ωe )
. (16)

The BP approximation to the symbol MAP estimator de-
fined in (4) is thus obtained by solving the BP equations
with β = 1, and estimating as a planted edge those for which
νe(1) > 1/2, namely,

M̂s(G ) := {e ∈ E :νe(1) > 1
2

}
= {e = (i, j) ∈ E :hi→e + h j→e > ωe}. (17)

We will keep the same rule (17) for the conversion of a
solution of the BP equations into an estimator of M for all
values of β, and in particular for β → ∞. If the block MAP
configuration is unique, and if the marginal probabilities νe

are computed exactly, then this is a legitimate way of deter-
mining the block MAP estimator (3). The BP algorithm is of
course only an approximation here, but we conjecture it to be
asymptotically exact, i.e., that the reduced Hamming distance
between the block MAP estimator and its BP version vanishes
in the thermodynamic limit. This relies on rigorous works
that, even if they do not directly apply to the case considered
here, have proven the exactness of the BP algorithm in similar
settings. More precisely, Ref. [24] proved that for a given
bipartite weighted graph, if the perfect matching with minimal
weight is unique then the β → ∞ version of the BP equations,
associated to the inclusion rule (17), converges to the optimal
configuration, in a number of iterations that scale with the
gap between the optimal weight and the second minimum,
and with the largest weight in the graph. Reference [25]

improved this convergence rate for typical bipartite graphs of
a random ensemble, while Refs. [26,27] removed the bipar-
titeness assumption but added a hypothesis on the absence of
fractional solutions for the linear programming relaxation of
the problem.

C. Recursive distributional equations

The BP equations have been written in Eqs. (15) for a given
instance of the graph G ; to obtain the average error on the
ensemble of all possible instances of our problem we need to
describe the statistics of the solutions of the BP equations.
This step is known as density evolution in the context of
error-correcting codes or as the cavity method in statistical
mechanics [28]. We refer the reader to Refs. [29,30] for
similar studies of the matchings in sparse, nonplanted random
graphs, and to Refs. [31,32] which considered the weighted
case (still without a planted structure).

Suppose that an instance is generated at random, that the
BP equations are solved on it, and that a directed planted
edge is chosen uniformly at random, say i → e; let us call
Ĥ the random variable that has the law of the cavity field
hi→e. We define similarly H as the random variable distributed
as hi→e when one chooses a nonplanted edge. Let us also
introduce the random variables 	 = ω(W ) and 	̂ = ω(Ŵ ),
where W (resp. Ŵ ) is a random variable with density P (resp.
P̂). If one assumes that the typical realizations of ν have no
long-range correlations (the so-called replica symmetric (RS)
hypothesis), then (15) translates into recursive distributional
equations (RDEs) between the random variables H and Ĥ.
A vertex i in a directed planted edge i → e is incident to
a Poissonian number of other nonplanted edges because of
the Erdős-Rényi nature of the latter, and similarly if i → e is
nonplanted there will be exactly one planted edge incident to
i, and other nonplanted edges from the Erdős-Rényi part of
the graph. With the RS assumption of independence of the
incoming cavity fields one thus obtains

Ĥ d= − 1

β
ln

(
Z∑

i=1

e−β(	i−Hi )

)
, (18a)

H d= − 1

β
ln

(
e−β(	̂−Ĥ) +

Z∑
i=1

e−β(	i−Hi )

)
d= − 1

β
ln(e−β(	̂−Ĥ) + e−βĤ′

). (18b)

In the equations above all random variables are indepen-
dent, Z is Poisson distributed with mean γ , the 	i’s have the
same law as 	, and similarly Hi’s are independent copies of
H, and Ĥ′ of Ĥ.

The average of the reconstruction error defined in (6) can
be computed in this setting, recalling the inclusion rule (17),
as

E[�] = μ̂

2
P [Ĥ + Ĥ′ � 	̂] + μ̂γ

2
P [H + H′ > 	]. (19)

D. A second pruning of the graph

Our goal in the following will be to understand the prop-
erties of the random variables H and Ĥ solutions of (18),
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and their possible bifurcations when the parameters of the
model are varied. As a first step in this direction we shall
isolate the contribution of “hard fields,” in other words the
probabilities of the events Ĥ = +∞ and H = −∞ for these
random variables. Observe indeed that P [Z = 0] > 0 in (18a),
which leads to Ĥ = +∞, and that this event implies H = −∞
in (18b). From both theoretical and practical point of views it
is convenient to deal with these events explicitly, and we shall
thus introduce the probabilities q̂ and q of the events Ĥ = +∞
and H = −∞, respectively, and two new random variables Ĥ
and H that have the law of Ĥ and H conditional on being
finite (we exclude the possibility of Ĥ = −∞ and H = +∞,
Ĥ and H are finite with probability one). In formulas these
definitions amount to

H d=
{−∞ with prob. q,

H with prob. 1 − q,
(20a)

Ĥ d=
{+∞ with prob. q̂,

Ĥ with prob. 1 − q̂.
(20b)

Let us insert them in (18) in order to obtain the equations
obeyed by q, q̂, H , and Ĥ . In the right-hand side of (18a) the
number of infinite and finite Hi’s are easily seen to be two
independent Poisson random variables of parameters γ q and
γ (1 − q), respectively. Ĥ is infinite if and only if the second
of this number vanishes, hence one has q̂ = e−γ (1−q) and

Ĥ
d= − 1

β
ln

(
Z∑

i=1

e−β(	i−Hi )

)
, (21)

where Z has the law of a Poisson random variable of pa-
rameter γ (1 − q) conditioned to be strictly positive, i.e.,
P [Z = k] = [γ (1−k)]k

k!(eγ (1−q) −1) for k � 1. In (18b) one sees that H

is infinite if and only if Ĥ is infinite, hence q = q̂ and

H
d=
{

	̂ − Ĥ with prob. q̂,

− 1
β

ln(e−β(	̂−Ĥ ) + e−βĤ ′
) with prob. 1 − q̂.

(22)

In summary the elimination of the hard fields amount to
find the solution q of

q = e−γ (1−q), (23)

and to study the finite random variables H and Ĥ solution of
the RDEs

Ĥ
d= − 1

β
ln

(
Z∑

i=1

e−β(	i−Hi )

)
, (24a)

H
d=
{

	̂ − Ĥ with prob. q,

− 1
β

ln(e−β(	̂−Ĥ ) + e−βĤ ′
) with prob. 1 − q,

(24b)

where the variable Z in Eq. (24a) has distribution P [Z = k] =
πk with

πk := q

1 − q

[(1 − q)γ ]k

k!
for k � 1. (25)

The average reconstruction error (19) can be reexpressed in
terms of the new random variables H and Ĥ as

E[�] = μ̂(1 − q)2

2
P [Ĥ + Ĥ ′ � 	̂]

+ μ̂(1 − q)2γ

2
P [H + H ′ > 	]. (26)

This procedure of “hard fields” elimination that we ex-
plained on the RDEs admits also an interpretation on a single
graph instance. As a matter of fact the presence of infinite
fields on the planted edges can be traced back to the BP
equation (15), which shows that hi→e = +∞ if i is a leaf of
the graph, i.e., i is of degree 1 and its only incident edge is e.
But this fact allows us to unambiguously identify e as an edge
of the planted matching, which by definition covers all the
vertices of the graph. Then i, the edge e = (i, j), the vertex j
and all the edges incident to it can be removed, the latter being
with certainty nonplanted edges. This leaf removal procedure
can be iterated until either all the graph has been pruned,
or stops when a nontrivial core without any leaf has been
reached. The propagation of infinite fields in the BP equations
is an equivalent way of describing this pruning algorithm.
Note that such a leaf removal procedure has already been stud-
ied in the literature for standard Erdős-Rényi graphs [33,34],
in this case a core percolation transition is found when the av-
erage degree of the graph crosses the Euler number value e: for
sparser graphs the leaf removal procedure typically destroys
the whole graph, while a nontrivial core survives for larger
average degrees. In our case the core percolation transition
happens at γ = 1 (which corresponds to the usual percolation
transition of the Erdős-Rényi random graph superposed to the
planted matching): if 0 < γ � 1 the self-consistent equation
(23) on q admits only the solution q = 1, which means that
the leaf removal procedure allows us to recover completely
the planted matching (up to a subextensive number of edges in
the thermodynamic limit). On the contrary for γ > 1 the leaf
removal stops with a nontrivial core [this explains why one
should take the solution q < 1 of (23) when γ > 1]. We shall
see in the following that full-recovery phases can exist also
for γ > 1, but in that case the simple leaf removal procedure
is not able to identify all the edges of the planted matching, the
full recovery is due to a nontrivial amplification effect, by the
iterations of the BP equations, of the information contained in
the weights of the edges of the core.

IV. THE LOCATION OF THE PHASE TRANSITION FOR
THE BLOCK MAP ESTIMATOR

A. RDEs for the block MAP

As explained in Sec. II B the block MAP estimator, that
maximizes the probability of correct identification of the
whole planted matching, is the configuration m that max-
imizes the posterior in Eq. (2), and can be obtained by
taking the “zero-temperature” limit β → ∞ in the probability
distribution ν defined in (11). The BP equations that we wrote
in (15) for a generic value of β become in this limit

hi→e = min
ẽ=(r,i)∈∂i\e

[ωẽ − hr→ẽ]; (27)
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the configuration maximizing the posterior (2) can be equiv-
alently defined as the perfect matching of minimum cost on
the weighted graph (V , E , ω), with the effective weights ωe

replacing the observed weights we. Hence these BP equations
coincide with those written in Ref. [24] to study such mini-
mum weight matching problems. With the inclusion criterion
of (17) the BP approximation for the block MAP configuration
is determined as

me = I(hi→e + h j→e − ωe > 0). (28)

The probabilistic treatment of the BP equations can also
be specialized very easily to the limit case β → +∞, in
particular the RDEs (24) yield

Ĥ
d= min

1�i�Z
[	i − Hi], (29a)

H
d=
{
	̂ − Ĥ with prob. q,

min(	̂ − Ĥ , Ĥ ′) with prob. 1 − q,
(29b)

with the law of the random variable Z defined in (25). The
average reconstruction error (26) can actually be simplified
for this β → ∞ situation into

E[�] = μ̂(1 − q)2P [Ĥ + Ĥ ′ � 	̂]; (30)

as discussed in Sec. II B [see in particular (7)] there are
as many misclassified planted and nonplanted edges when
the estimator contains N/2 edges, which we argued to be
asymptotically the case for β → ∞, hence the two terms in
(26) are equal. For completeness we show in Appendix A
that this equality follows indeed from the RDE (29), modulo
a hypothesis of continuity for the distributions of H and Ĥ ,
that mimics the hypothesis of uniqueness of the block MAP
assignment.

The equalities in distribution between random variables
stated in (29) can be equivalently rephrased as equations
between the cumulative distribution functions of the variables
H and Ĥ . For a random variable X we shall define the c.d.f.
FX and its reciprocal F̄X according to

FX (x) = P [X � x], F̄X (x) = 1 − FX (x) = P [X > x].

One obtains from (29)

F̄H (h) = [q + (1 − q)F̄Ĥ (h)]
∫

�

FĤ [ω(w) − h]P̂(w) dw

(31a)

and

F̄Ĥ (h)= q

1−q

∞∑
k=1

[γ (1−q)]k

k!

[∫
�

FH (ω(w) − h)P(w) dw

]k

= exp
{−γ (1 − q)

∫
�

F̄H [ω(w) − h]P(w) dw
}− q

1 − q
.

(31b)

These are integral nonlinear equations on the two functions
FH and FĤ , describing the thermodynamic limit of the planted
matching problem. These recursive equations can also be
understood as describing the optimal matching problem on an
infinite tree. The authors of Ref. [10] show rigorously that for
fully connected graphs the optimal configuration of the finite

graph locally converges to the optimal matching of the infinite
tree.

The above integral nonlinear equations are quite compli-
cated to solve in general. It was shown in Ref. [10], that, for a
rather specific case (in the large degree limit with an exponen-
tial distribution for the planted weights) these integral equa-
tions can be transformed into a system of ordinary differential
equations (which we will detail in Sec. VI). Unfortunately
such a simplification does not seem to hold besides this special
case.

The question now is to understand the solution of (29)
[or equivalently of (31)] as a function of the parameters
of the model. It is easy to check that Ĥ = +∞, H = −∞
[i.e., FĤ (h) = 0, FH (h) = 1] is always a solution, for every
choice of the parameters. If this is the correct solution then
E[�] = 0, in other words one is in a full-recovery phase.
The picture that emerges from the previous works [3,10] is
that for some value of the parameters another solution of
(29) exists and is attractive when running BP from an initial
condition uncorrelated with the planted matching. One is then
in a partial-recovery phase, with E[�] > 0. On the contrary
if Ĥ = +∞, H = −∞ is the only solution of (29) one is in
a full-recovery phase, the hidden matching being sufficiently
attractive to drive the iterations of the BP equations towards
it. According to this description the phase transition between
full and partial recovery corresponds to the disappearance of
a nontrivial solution of the RDE (here and in the following
nontrivial means distinct from Ĥ = +∞, H = −∞). This can
of course be studied numerically, and we shall display later on
some results obtained in this way; in the next subsection we
shall argue that, with some additional hypotheses on the na-
ture of the transition one can compute its location analytically.

B. Locating the transition

Let us assume that the quantities p, p̂, and c defining the
model depend on some continuous parameter denoted λ, and
that there exists a threshold value λ̄ such that E[�](λ) = 0 for
λ > λ̄, and E[�](λ) > 0 for λ < λ̄. We further assume that the
transition at λ̄ is continuous, i.e., E[�](λ) → 0 as λ → λ̄−.
Under these hypotheses, the expression (30) of E[�] reveals
that P [Ĥ + Ĥ ′ > 	̂] → 1 when λ reaches its threshold value
from the partial-recovery phase. But if P [Ĥ + Ĥ ′ > 	̂] = 1
the minimum in (29b) is always realized by the first argument,
which leads us to study the following, simplified form of the
RDE (29):

K̂
d= min

1�r�Z
[	r − Kr], (32a)

K
d= 	̂ − K̂, (32b)

which bear on a new couple of random variables K̂ and K .
The transition point will be characterized by the fact that the
simplified RDE in Eqs. (32) has a nontrivial solution at λ̄. To
facilitate the discussion we define a new random variable,

�
d

:= 	 − 	̂, (33)
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in terms of which Eqs. (32) can be written as a distributional
equation for K̂ only,

K̂
d= min

1�r�Z
[�r + K̂r]. (34)

This RDE is actually connected to the properties of branch-
ing random walk (BRW) processes, a subject that has gener-
ated a vast literature in both physics and mathematics [12–22],
in the more general context of front propagation for reaction-
diffusion equations. For the convenience of the reader we
summarize here the definitions and the main properties we
need about BRWs, more details can be found in Appendix
B. A BRW describes the evolution of a population of particles
that move along a continuous unidimensional spatial axis and
multiply as time increases in discrete steps (the equivalent
process in continuous time being the branching Brownian
motion). More explicitly, at the initial generation n = 0 there
is a single particle at the origin, X (0)

1 = 0. Each generation
n is given by a set of particles in positions {X (n)

k }k and is
constructed iteratively. Each particle of the generation n, say,
the ith one at position X (n)

i , gives rise to a number (possibly
infinite) of offsprings in the next generation, located at the po-
sitions X (n+1)

i,r = X (n)
i + �i,r where the displacements {�i,r}r

between the positions of a parent particle and its offsprings
are, independently for each i, copies of an identical point
process. In the simplest cases the number of offsprings is
Zi, an independent copy of the random variable Z for each
parent i, and the displacements �i,r are i.i.d. copies of a given
random variable �.

A realization of such a process is pictured on the example
below:

n = 0

n = 1

n = 2

n = 3

X
(0)
1

Note that BRWs combine and generalize Galton-Watson
branching processes, that are recovered if one looks only
at the number of particles in the BRW and discards their
positions, and unidimensional random walks: the positions of
the particles along a single branch of the BRW follow the law
of a simple random walk.

Among several properties of BRWs one that has attracted
significant research effort is the asymptotic behavior in the
large n limit of the minimum of the process. Let us denote
K̂ (n) = mink [X (n)

k ] the position of the leftmost particle in the
nth generation. Decomposing a BRW of depth n + 1 into Z
BRW of depth n attached to the root via Z displacements �r it
is easy to convince oneself that K̂ (n) obey the following RDE:

K̂ (n+1) d= min
1�r�Z

[
�r + K̂ (n)

r

]
, (35)

with the initial condition K̂ (0) = 0 and the convention K̂ (n) =
−∞ if the process is extinct before the nth generation. Such
sequences of random variables have been extensively studied,
and very precise mathematical results have been obtained. A
first level of description [12–14] shows that, conditional on
the nonextinction of the process, K̂ (n) has a ballistic behavior,
namely, K̂ (n)/n

a.s.−−−−→
n→+∞ v, with an almost sure convergence

towards a velocity v that can be computed in terms of the law
of the point process of the displacements:

v = − inf
θ>0

1

θ
lnE

[∑
r

e−θ�r

]
. (36)

When the number of offspring is a random variable of law Z
and the displacements i.i.d. copies of � this simplifies into

v = − inf
θ>0

1

θ
ln(E[Z]E[e−θ�]); (37)

see also Appendix B for a heuristic justification of this ex-
pression of the velocity. More recently a finer description of
the limit has been obtained [18,20,22]: under some technical
conditions there exists a constant C, such that, conditional on
the nonextinction of the process,

K̂ (n) − nv − C log n
d−−−−→

n→+∞ L, (38)

where the convergence is in law and L is a finite random
variable satisfying

L
d= −v + min

1�r�Z
[�r + Lr]. (39)

Note that this equation is invariant by translation: if L is a
solution, then L + a also is, for any constant a. Moreover
the left tail behavior of the limit random variable L was
established in Refs. [20,22] to be

P [L � z] ∼ α z eθ∗z as z → −∞, (40)

where θ∗ is the minimizer of (37), and α < 0 a constant.
Let us now come back to the planted matching problem and

specialize these results taking for the law Z of the offspring of
the BRW the expression (25), and for � the random variable
defined in (33), where we recall that 	 (resp. 	̂) is the random
variable ω(W ) with the function ω of (12) and W drawn with
the distribution P (resp. P̂). Note that in our case Z � 1 with
probability 1, hence the probability of extinction of the BRW
process is equal to zero. The expression of the velocity (37)
becomes then

v = − inf
θ>0

ln [I (θ )I (1 − θ )]

θ
, (41)

with

I (θ ) = √
γ

∫
�

P̂(w)θP(w)1−θ dw, (42)

where we remind readers of the definition of � in Eq. (8a).
One realizes at this point that if the parameters of the problem
are such that v = 0, then the random variable L solution of
(39) and constructed through the large generation limit of the
BRW is a nontrivial solution of Eq. (34): this is precisely
the condition we argued to be satisfied at the continuous
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phase transition between full and partial-recovery phases. The
vanishing velocity criterion

inf
θ>0

ln [I (θ )I (1 − θ )]

θ
= 0 (43)

is actually equivalent to I (1/2) = 1 because the argument of
the logarithm is a convex function symmetric around θ = 1/2,
and therefore this condition becomes∫

�

√
P̂(w)P(w) dw = 1√

γ
, (44)

or equivalently in terms of the original parameters:∫
�

√
p̂(w)p(w) dw = 1√

c
. (45)

Note that the Cauchy-Schwarz inequality implies∫
�

√
P̂(w)P(w) dw � 1, (46)

hence (44) cannot be satisfied if γ < 1. This is perfectly
consistent with what we found in Sec. III D, if γ < 1 the only
solution to (23) is q = 1, signaling a phase where full recovery
can be achieved by the leaf removal procedure.

Equation (45) is our first main result; it provides a predic-
tion for the locus of the continuous phase transition in the
parameter space (p, p̂, c) of the model. We shall simplify it
in the large degree limit in Sec. IV C, and test it numerically
on several examples in Sec. V. Before that we shall make a
series of remarks on the reasoning which led to it and on its
consequences.

(1) We have implicitly assumed that v = 0 is a necessary
condition for (34) to have a nontrivial solution, in other words
that the solution of (39) is unique (modulo the invariance
under translations) and can thus be realized as the (properly
shifted) large n limit of the BRW construction. This unique-
ness is actually an open question in mathematics, stated as
open problem 46 in Ref. [19].

(2) We justified the introduction of the simplified RDE (32)
by an assumption on the continuity of E[�]. We can be more
precise in some cases; suppose that the random variable 	̂

is not bounded from above, i.e., that ω(w) diverges to +∞
at some point in � (as we will see later there are nontrivial
examples where this property can be true or false). Then a
continuously vanishing E[�] in Eq. (30) can occur only if Ĥ
diverges to +∞ as λ → λ̄−. In that case we can restate more
precisely our hypothesis as the existence of a function m(λ)
that diverges to +∞ as λ → λ̄−, such that

Ĥ − m(λ)
d−−−→

λ→λ̄−
K̂, (47)

with K̂ solution of (34). The case studied in Ref. [10] falls in
this category, and Sec. VI will be devoted to the determination
of the divergence of m(λ).

(3) Independently of the continuity assumption, a point in
parameter space with v > 0 is most certainly in a full-recovery
phase, according to the following reasoning. Instead of the
fixed point condition (29) consider an iterative version of these

equations,

Ĥ (n+1) d= min
1�i�Z

[
	i − H (n)

i

]
, (48a)

H (n) d=
{
	̂ − Ĥ (n)

1 with prob. q,

min
(
	̂ − Ĥ (n)

1 , Ĥ (n)
2

)
with prob. 1 − q,

(48b)

that defines a sequence of random variables Ĥ (n), with the
initial condition Ĥ (0) = 0. Comparing these equations with
(35) one can show by induction on n that K̂ (n) is stochastically
smaller [35] than Ĥ (n); we detail this proof in Appendix B 2.
Here we shall only recall that given two random variables X
and Y one says that X is stochastically smaller than Y , to be
denoted X � Y , if and only if P [X > x] � P [Y > x] for all
x. This condition is equivalent to the existence of a coupling
(X̂ , Ŷ ), i.e., a random vector with marginal laws equal to those
of X and Y , respectively, such that P [X̂ � Ŷ ] = 1. In our case
if v > 0 we have seen that K̂ (n) diverges to +∞ in the large n
limit, hence by this stochastic comparison argument this will
also be the case of Ĥ (n). With the assumption that a nontrivial
solution of the fixed point equation (29), if it exists, will be
reached as the large n limit of the sequence Ĥ (n), this allows us
to conclude that v > 0 rules out such a nontrivial fixed point,
hence is a criterion for a full-recovery phase.

C. The large degree limit

As explained in Sec. II the large degree limit, c → ∞
taken here after the thermodynamic limit N → ∞, allows us
to recover the dense models defined on complete graphs in
Refs. [3,10], if one performs an appropriate rescaling of the
distribution of the weights on the nonplanted edges. Consider
indeed the condition (45): if p and p̂ are kept constant as
c → ∞ this becomes

∫
�

√
p̂(w)p(w) dw = 0, which is never

satisfied unless � is empty (and in this case the planted edges
can be identified by inspection of the weight on the edges, as
p and p̂ have disjoint supports). Indeed, if the weights on both
types of edges are of the same order of magnitude, around
one vertex the planted weight will be hidden among the O(c)
nonplanted ones and impossible to distinguish in the c → ∞
limit. To have a nontrivial partial–full-recovery transition for
c → ∞ it is therefore necessary to scale the nonplanted edges
weights, the simplest way being to take the nonplanted weight
distribution uniform on the interval [0, c]. The condition (45)
becomes then ∫ √

p̂(w) dw = 1, (49)

where we assumed for simplicity of notation that the support
of p̂ is included in the positive real axis.

V. EXAMPLES

We shall now confront our analytical prediction for the
location of the phase transition with numerical results, ob-
tained both for finite N by solving the BP equations on
single samples of the problem, and in the thermodynamic
limit by solving numerically the RDEs. Some details on these
numerical procedures are given in Sec. V D.
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For concreteness we will always take an uniform distribu-
tion for the nonplanted weights,

p(w) = 1

c
I(0 � w � c), (50)

for which Eq. (45) further simplifies as∫
�

√
p̂(w) dw = 1, � = supp( p̂) ∩ [0, c]. (51)

We will present our results for different choices of p̂, some of
them partially investigated in the literature.

A. The exponential distribution

Let us start by considering the exponential distribution

p̂(w) = λ e−λw I(w � 0), (52)

for which, in the large degree limit, Ref. [10] proved that λ <

4 is a partial-recovery phase, while λ > 4 corresponds to full
recovery.

Our predictions are summarized in the phase diagram in the
(c, λ) plane displayed in Fig. 1. The red line corresponds to
the condition γ = 1 below which the leaf removal procedure
described in Sec. III D recovers completely the hidden match-
ing; here μ = 1 and μ̂ = 1 − e−λc, and the equation of this
line is thus λ = − log[1 − (1/c)]/c. The blue line is instead
the vanishing velocity criterion (51), which becomes for this
choice of p̂:

1 =
∫ c

0

√
λ e− λw

2 dw = 2
1 − e− cλ

2√
λ

, (53)

a relation that can be inverted in

c = −2

λ
ln

(
1 −

√
λ

2

)
. (54)

This blue line separates a domain, in blue in Fig. 1, where
v < 0, corresponding to a partial-recovery phase, from a full-
recovery phase (in white) with v > 0. Note that the curve has
a minimal abscissa of c ≈ 1.2277 below which there is full
recovery for all λ. In the large degree limit the two branches
of the blue line converge to λ = 0 and λ = 4, we thus recover
the results of [10].

The red dots on this phase diagram have been obtained
from a numerical resolution of Eqs. (29), using a popula-
tion dynamics algorithm, and correspond to the limit values
for which we found a nontrivial solution of the equations.
They are in agreement, within numerical accuracy, with the
analytical prediction. In Fig. 2 we compare our prediction
for the average reconstruction error E[�] (nonzero in the
partial-recovery phase) obtained by Eqs. (29) and (30) (in
the thermodynamic limit) with the numerical results obtained
running a belief propagation based on Eq. (27) (on finite
graphs). The agreement between these two procedures is very
good, except for smoothing finite-size effects close to the
phase transitions.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

λ

�

c = 2

c = 3

c = 4

c = 5

c = 10

c → +∞

FIG. 2. Reconstruction error for the planted matching problem
with exponential planted weights and different values of c. The
lines have been obtained numerically solving the RDEs (29) using
a population dynamics algorithm with 106 fields. The dots are the
results of the resolution of the BP equations (27) on graphs of
N = 103 vertices, averaged over 104 instances, the c → +∞ case
corresponding to the complete graph.

B. The folded Gaussian case

We have also considered a planted weight distribution of
the folded Gaussian form,

p̂(w) =
√

2

πλ
e− w2

2λ I(w � 0), (55)

that had been investigated previously in Ref. [3] in the large
degree limit. Our prediction for this case, easily obtained by
plugging this expression in (51) and taking the c → ∞ limit,
is of a phase transition at

λ̄ = 1

2π
≈ 0.1591 (56)

between a partial-recovery phase for λ > λ̄ and a full-
recovery phase for 0 < λ < λ̄. This agrees qualitatively with
the numerical investigations of Ref. [3], but not with the
value of the threshold that was estimated in Ref. [3] to be
λ̄ = 0.174(4). We believe this discrepancy is due to finite-
population size effects (that are particularly severe in this
kind of problems, as discussed in Sec. V D) in the study of
Ref. [3]. To check this point we solved the equations with a
careful numerical integration (see Sec. V D) of the recursive
equations, which convincingly suggests that λ̄ < 0.160(1), as
shown in Fig. 3.

C. The truncated power-law case

Let us consider as a final example the case where the
density of the weights on the planted edges varies as a power
law on a finite interval,

p̂(w) = αwα−1

λα
I(0 � w � λ), (57)

with α > 0. For the sake of simplicity, we will restrict our
analysis to the case c > λ. Then one finds immediately that
� = [0, λ], P̂ = p̂, P is the uniform distribution on [0, λ] and
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FIG. 3. Planted matching problem with (folded) Gaussian
weights, in the large degree limit; the curves have been obtained
from a numerical resolution of Eqs. (31), the red line corresponding
to the reconstruction error �, the blue line to the median cavity fields
on planted edges M[Ĥ ]. The light-red interval corresponds to the
estimate for the transition point given in Ref. [3].

γ = λ, in such a way that as soon as c > λ the problem on the
pruned graph is completely independent of c.

The transition condition γ = 1 for the full recoverability
of the planted matching by the leaf removal algorithm is thus
λ = 1, which yields the red domain in the phase diagram of
Fig. 4. The vanishing velocity condition (51) becomes here

λ̄ = (1 + α)2

4α
, (58)

which is plotted as a blue line in Fig. 4, the full-recovery phase
corresponding to the domain λ < λ̄. This prediction is in
agreement with the numerical results obtained by a population
dynamics resolution of the RDEs.
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FIG. 4. Phase diagram of the recovery transition for the planted
matching problem with a truncated power-law distribution for the
planted weights. The red line corresponds to the γ = 1 bound for the
full-recovery transition. The circles are the transition points obtained
running a population dynamics algorithm with 106 fields.

For α = 1, that corresponds to the planted weights uni-
formly distributed on [0, λ], one can actually solve the RDEs
explicitly. Indeed in this case the function ω(w) in Eq. (12)
vanishes, hence Eqs. (29) reduce to

Ĥ
d= − max

1�i�Z
[Hi], (59a)

H
d=
{−Ĥ with prob. q,

min(−Ĥ , Ĥ ′) with prob. 1 − q,
(59b)

which obviously admit the solution H
d= Ĥ

d= 0. Indeed the
effective weights on the pruned graph are all equal, the planted
matching is one of the many perfect matchings of this reduced
graph, but there is no information contained in the weights
to decide which one. In a simple-minded application of the
inclusion rule (17) one would include in the estimator the
edges of the pruned graph independently with probability 1/2,
leading to an average estimation error E[�] = (1 − q)2(1 +
λ)/4 for λ > 1, and of course E[�] = 0 for λ � 1.

D. A note on the numerical procedures

Most of the thermodynamic limit results presented above
have been obtained by a numerical resolution of Eqs. (29)
via a population dynamics algorithm [28]. The idea of this
method, which is very commonly used to solve RDEs, is to
represent the law of a random variable X as the empirical
distribution of a sample {X1, . . . , XN } of its representants,
with N � 1 to improve the accuracy of the method. In terms
of cumulative distributions this corresponds to the approxima-
tion

FX (x) ≈ 1

N

N∑
i=1

I(Xi � x). (60)

One considers then the iterative version of the RDE written
in (48), and update the population according to these rules.
For instance each representant Ĥi at the iteration n + 1 is
generated, independently, by drawing an integer Z with the
law (25), Z copies of the random variable 	, and Z repre-
sentants of H at the iteration n, by a uniform choice over
the N ones. These quantities are then combined according
to the right-hand side of (48a) to compute Ĥi. The sample
of representants of H at the iteration n + 1 is then generated
similarly according to (48b). These steps are repeated a large
number n of times, the type of phase (partial or full recovery)
is then decided according to the convergence or divergence
to +∞ of the population representing Ĥ (n) in the large n
limit. The accurate determination of such a phase transition
suffers from finite population size effects that are much more
severe than in usual applications of the population dynamics
algorithm. Indeed, the transition is governed by an instability
that manifests itself as a front propagation in the cumulative
distribution function; such front propagations are generically
driven by the behavior in the exponentially small tail far
away from the front [15–17]. As the finite population size
implies a cutoff of 1/N on the smallest representable value
of the cumulative distribution function, this translates into
logarithmic finite population size effects on the velocity of the
front and the location of the phase transition, at variance with
the usual 1/N corrections for the computation of observables
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as empirical averages. We refer the reader to Ref. [15] for
a quantitative study of these logarithmic corrections in the
velocity of a front in presence of a threshold in its tail.

We thus believe that the discrepancy in the folded Gaus-
sian case between our analytical prediction λ̄ = 1

2π
≈ 0.159

and the numerical estimate λ̄ = 0.174(4) of Ref. [3] can be
ascribed to these strong finite-N effects. The results pre-
sented in Fig. 3 that supports this thesis have been obtained
with another numerical procedure: instead of the population
representation (60) of the cumulative distribution functions
FH (h) and FĤ (h) we stored their values in M points h1 <

h2 < · · · < hM over a given interval [h1, hM ] and updated
them using Eqs. (31) until a certain convergence criterion was
satisfied (until the L2 distance between the solution at step
n and the solution at step n − 1 was smaller than a given,
prefixed tolerance ε). The advantage of this method is that
the cutoff hM can be taken arbitrarily large, in such a way that
F̄Ĥ (hM ) is very small, hence bypassing the threshold at 1/N
of the population dynamics algorithm. After convergence the
function FĤ (h) can be used to estimate E[�], e.g., by a Monte
Carlo integration.

VI. A MORE PRECISE DESCRIPTION OF THE CRITICAL
REGIME

Once the threshold value of a parameter has been deter-
mined it is natural to aim at a more quantitative description
of the transition in its critical regime. In the case considered
in this paper of planted models that undergo a continuous
transition from partial recovery for λ < λ̄ to full recovery for
λ > λ̄ this point amounts to describe how the average recon-
struction error E[�] vanishes as λ → λ̄−. This was raised as
open question 2 in Ref. [10], and we shall study it in the model
defined therein, i.e., with an exponential distribution for the
planted weights, in the large degree limit. This case allows
for some technical simplifications; as shown in Ref. [10] the
RDEs can then be reduced to a system of ordinary differential
equations (ODEs), that we first recall in the next subsection
before studying their solution in the critical regime.

A. The ODEs for the exponential model

Let us specialize our formalism with the following choices
of weight distributions: p̂(w) = λ e−λw for w � 0, and
p(w) = 1/c for w ∈ [0, c]. The intersection of their supports
is thus � = [0, c], and one finds μ = 1, μ̂ = 1 − e −λc. The
reduced distributions P̂ and P are then, on their common
support �, P̂(w) = λ e−λw /μ̂ and P(w) = 1/c, which gives
an effective weight function ω(w) = λw − ln(λc/μ̂). The
parameter q is the solution of q = e−γ (1−q) with γ = cμ̂.

To simplify the notations, and to get closer to the conven-
tions used in Ref. [10], we shall define random variables X
and Y that are affine transformations of Ĥ and H , respectively.
More precisely we define their cumulative functions as

FX (x) := FĤ

[
λ x − 1

2
ln

(
λc

μ̂

)]
, (61)

FY (x) := FH

[
λ x − 1

2
ln

(
λc

μ̂

)]
, (62)

and keep the convention F̄ = 1 − F for reciprocal cumulative
distributions. Equations (31) become

F̄Y (x) = [q + (1 − q)F̄X (x)]
λ

μ̂

∫ c

0
e−λw FX (w − x) dw,

(63a)

F̄X (x) = exp
[− μ̂(1 − q)

∫ c−x
−x F̄Y (w) dw

]− q

1 − q
. (63b)

Taking the limit c → +∞, in which μ̂ → 1 and q → 0,
Eqs. (63) become

F̄Y (x) = F̄X (x)
∫ +∞

0
λ e−λw FX (w − x) dw, (64a)

F̄X (x) = exp

[
−
∫ +∞

−x
F̄Y (w) dw

]
. (64b)

These equations between cumulative distribution functions
correspond to the following RDEs on X and Y :

X
d= min {ξi − Yi}, (65a)

Y
d= min(η − X, X ′), (65b)

where in the first line the ξi’s are the points of a Poisson point
process of intensity 1 on the positive real axis, and in the
second line η has an exponential distribution of parameter λ. It
is convenient to introduce the auxiliary function V (x) defined
as the cumulative distribution of the random variable X − η,

V (x) := P [X − η � x] =
∫ +∞

0
λ e−λw FX (w + x) dw,

(66)

in such a way that (64a) can be rewritten F̄Y (x) =
F̄X (x)V (−x). Taking derivatives with respect to x in (64b) and
(66), and denoting for simplicity F = FX , one obtains

F ′(x) = [1 − F (x)][1 − F (−x)]V (x), (67a)

V ′(x) = λ(V (x) − F (x)), (67b)

where the form of the equation on V crucially depends on
the exponential character of the distribution of the planted
weight η. These two equations on F and V are not yet ODEs
because one of the arguments in the right-hand side of (67a)
is −x instead of x; to bypass this difficulty one introduces two
additional functions, G(x) := F (−x) and W (x) := V (−x), in
such a way that the four-dimensional vector (F, G,V,W )(x)
obeys an autonomous first-order ODE, from the solution of
which the average reconstruction error is computed as

E[�] = P [X + X ′ � η]

= 2
∫ ∞

0
[1 − F (x)][1 − G(x)]V (x)W (x) dx; (68)

see Ref. [10] for the details of the derivation of the integral
expression of E[�].

The dimensionality of the problem can be reduced by
exploiting the conservation law F (x)W (x) + G(x)V (x) −
V (x)W (x) = 0 for all x. Introducing finally U (x) =
F (x)/V (x) it is shown in Ref. [10] that the problem reduces to
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FIG. 5. Cumulative distribution F (x) for, from left to right, λ =
3, λ = 3.8, λ = 3.92. Inset: the three curves have been shifted hor-
izontally by their medians M(λ) = F−1(1/2), the collapse confirms
the hypothesis stated in (71) of a convergence in distribution of the
shifted random variables.

solve, for x � 0, the following ODE on the three-dimensional
vector (U,V,W )(x):

U ′(x) = −λU (x)[1 − U (x)]

+ [1 − U (x)V (x)]{1 − [1 − U (x)]W (x)}, (69a)

V ′(x) = λV (x)[1 − U (x)], (69b)

W ′(x) = −λW (x)U (x), (69c)

with the initial conditions

U (0) = 1
2 , V (0) = W (0). (70)

Even if the notation does not show it explicitly the solution
of these ODEs depends of course on λ, both directly as λ

appears in (69) and indirectly through the initial condition
V (0) = W (0). It is indeed shown in Ref. [10] that for a given
λ < 4 there is a unique choice of this initial condition that
yields a proper solution, i.e., one in which F and V have the
properties of cumulative distribution functions (nondecreas-
ing and bounded between 0 and 1).

B. The divergence of X in the limit λ → 4

We present in Fig. 5 the cumulative distribution F of the
random variable X , for three values of λ increasing towards
the critical value λ = 4, obtained by a numerical resolution
of the ODE (69). This plot suggests that F drifts without de-
formation when approaching the transition; this impression is
confirmed by the inset of the figure, which shows a very good
collapse of the curves once shifted by the median M(λ) =
F−1(1/2) of X (any other quantile would have led to the same
collapse, with an additional constant shift of the horizontal
axis). This observation has two equivalent translations: from
the probabilistic point of view it corresponds to the existence
of a function m(λ) and a random variable X̂ such that

X − m(λ)
d−−−→

λ→4−
X̂ , (71)

43.83.63.43.23
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FIG. 6. Median M(λ) of the cumulative distribution in the ex-
ponential case, compared to the analytical prediction (78) for m(λ).
Inset: the dots show M(λ) − m(λ), the dashed line is a linear fit that
confirms the convergence of M(λ) − m(λ) to a finite constant in the
limit λ → 4.

as was stated in (47) for generic weight distributions, m(λ) dif-
fering from M(λ) by an arbitrary constant. From the analytic
point of view it means that the solution of the ODEs admits
a scaling regime x = z + m(λ) when z is kept fixed while
λ → 4−, described by functions F̂ (z), V̂ (z), Û (z), defined as

F̂ (z) = lim
λ→4−

F [z + m(λ)], (72)

similar definitions holding for V̂ and Û . The dots in the main
panel of Fig. 6 represent the numerically determined value of
M(λ), and suggest a divergence of this quantity as λ → 4−.
Supposing that m(λ) indeed diverges one can simplify the
ODEs (67) in this scaling regime, with F (−x) → 0; this
yields

F̂ ′(x) = [1 − F̂ (x)]V̂ (x), (73a)

V̂ ′(x) = 4[V̂ (x) − F̂ (x)]. (73b)

F̂ is the cumulative distribution of the limit variable X̂ ,
solution of the simplified RDE

X̂
d= min {ξi − Ŷi}, (74a)

Ŷ
d= η − X̂ . (74b)

Studying this simplified ODE in the z → −∞ limit where
it can be linearized, or appealing to the theorems explained in
(40) for the left tail behavior of the limit random variable in
the BRW interpretation, one finds

F̂ (z) ∼
z→−∞ −A z e2z, Û (z) ∼

z→−∞
1

2
− 1

4z
, (75)

where A > 0 is a constant that cannot be fixed because of the
invariance by translation of the equation.

In order to determine the sought-for divergence of m(λ)
as λ → 4− we need now to study the solution of the ODE
(69) on another scaling regime, x = tm(λ) with t ∈ [0, 1) kept
fixed in the limit, that will allow us to take into account the
initial condition (70). The derivation will then conclude by
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a matching argument at the common boundary of the two
scaling regimes, t → 1− and z → −∞.

In order to study the scaling regime x = tm(λ) we first
notice that V (0) → 0 as λ → 4−, because V is the cumulative
distribution function of the random variable X − η that di-
verges in this limit. It is thus instructive to solve first Eqs. (69)
with V (0) = W (0) = 0, denoting U0,V0,W0 its solution, even
if this cannot be exactly a proper solution. One finds V0(x) =
W0(x) = 0 for all x � 0, and (69a) simplifies into

U ′
0(x) = −λU0(x)[1 − U0(x)] + 1, (76)

an equation that can be solved exactly for any λ < 4 with the
initial condition U0(0) = 1/2, yielding

U0(x) = 1

2
+ 1

2

√
4 − λ

λ
tan
[ x

2

√
λ(4 − λ)

]
. (77)

This expression diverges when the argument of the tangent
reaches π/2, which gives us a natural candidate for the scale
m(λ) at which the first regime ends, namely,

m(λ) = π

2
√

4 − λ
, (78)

and a conjecture for the behavior of the solution U (x) of the
full ODE in the first scaling regime, namely,

lim
λ→4−

1√
4 − λ

{
U [tm(λ)] − 1

2

}
= 1

4
tan
(

t
π

2

)
. (79)

We have assumed here that V (0), even if strictly nonzero
for all λ < 4, is sufficiently small for the second line in
(69a) to be negligible, and hence for U to coincide with
U0 at the dominant order in this scaling regime. To check
the self-consistency of this hypothesis we first give an exact
expression of V and W in terms of U obtained by integration
of (69b) and (69c):

V (x) = V (0) exp

{
λ

∫ x

0
[1 − U (y)] dy

}
, (80)

W (x) = e−λx V (x). (81)

Inserting the scaling ansatz (79) into (80) we obtain

lim
λ→4−

1

V (0)
V (tm(λ)) e−2tm(λ) = cos

(
t
π

2

)
, (82)

the behavior of W being easy to deduce from the one of
V because of (81). We fix now the initial condition V (0)
by matching the behavior t → 1− of this expression with
the limit z → −∞ of the other regime, which from (75) is
V̂ (z) ∼ −2Az e2z, with the correspondence t ∼ 1 + z

m(λ) . This
yields

V (0) = 2A e−2m(λ) 1√
4 − λ

(83)

and allows us to check that indeed the first line of (69a) is
dominant in the scaling regime t = m(λ) as long as t < 1,
confirming the self-consistency of our hypothesis. In addition
the behavior of U in (75) and (79) matches at the boundary
of the two scaling regimes. Note that the indeterminacy of
the constant A, because of the invariance by translation of
the equations on F̂ and V̂ , is related in (83) to the additive
arbitrary constant that can be added to m(λ).

The inset of Fig. 6 presents a numerical confirmation of this
reasoning: the difference between the numerically determined
median of X and our formula (78) is seen to converge to
a finite constant when λ → 4− (with corrections that seem
polynomial in 4 − λ). We have also checked that the numeri-
cal results for U (x) and V (x) are compatible with the scaling
ansatz of (79) and (82).

C. The critical behavior of E[�]

We would like now to use our prediction (78) for the
divergence of X in order to describe the way in which the
average reconstruction error E[�] vanishes at the transition.
The expression of the latter, given in (68), can be rewritten as

E[�] = E[e−λX ]2. (84)

Indeed, the exponential distribution of η is such that P [η �
x] = e−λx, and X and X ′ in (68) are independent random
variables with the same law. Recalling the convergence in
distribution stated in (71), and the prediction (78) of m(λ),
it would be tempting to write

E[�] ∝
λ→4−

e− 4π√
4−λ E[e−4X̂ ]2. (85)

Unfortunately this result has to be amended: as the tail of
X̂ varies as e2z for z → −∞ [cf. Eq. (75)] the expectation
value E[e−4X̂ ] is infinite. Using the integral expression of E[�]
given in (68), one finds that the leading contribution is given
by the scaling regime x = tm(λ) and is of the form

2
∫ m(λ)

0
V (x)W (x) dx = 2

∫ m(λ)

0
V (x)2 e−λx dx (86)

∝ V (0)2
∫ 1

0
cos2

(
t
π

2

)
m(λ) dt . (87)

The asymptotic form of the initial condition stated in (83),
combined with the expression of m(λ) given in (78), yields
finally the prediction

E[�] ∝
λ→4−

e− 2π√
4−λ (4 − λ)−3/2. (88)

Note that all the derivatives of E[�] vanish as λ → 4− be-
cause of the essential singularity of the exponential term, the
transition is thus of infinite order in the usual thermodynamic
classification.

We present in Fig. 7 our numerical results for E[�], com-
puted by a numerical integration of the ODE and the integral
expression in (68). The main panel shows qualitatively that
E[�] is indeed very flat close to the transition; the rescaling
performed in the inset is in agreement with the asymptotic
form (88).

VII. THE SYMBOL MAP CASE

We have discussed above the phase diagram of the prob-
lem, and distinguished in particular full and partial-recovery
phases, considering the block MAP estimator, i.e., the β →
∞ version of the BP equations. The phases were thus defined
according to whether the average reconstruction error E[�b]
vanished in the thermodynamic limit or not, the subscript
b specifying the use of the block MAP estimator in the
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FIG. 7. The average reconstruction error E[�] that vanishes con-

tinuously as λ → 4−. Inset: E[�] e
2π√
4−λ (4 − λ)3/2 as a function of λ,

the convergence to a postive constant as λ → 4− confirms (88).

computation. However, we explained in Sec. II B that the
estimator that minimizes the average reconstruction error is
the symbol MAP one, obtained with β = 1, with an average
reconstruction error denoted E[�s]. As E[�s] � E[�b] the
phases shown to be of the full-recovery type for β → ∞
are certainly so also for the symbol MAP estimator, one can
nevertheless wonder if the converse is true, namely if some
choices of parameters yield 0 = E[�s] < E[�b].

We have investigated this question numerically, by solving
with a population dynamics algorithm the RDEs (24) with
β = 1, and computed E[�s] from (26). Our results are pre-
sented in Fig. 8; for concreteness we have used the expo-
nential distribution of Eq. (52) for the planted weights, and
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FIG. 8. The average reconstruction error for the symbol MAP
estimator (β = 1) with exponentially distributed planted weights, at
different values of c. The solid lines have been obtained numerically
solving the RDEs in Eq. (24) with β = 1 using a population dynam-
ics algorithm with 106 fields. The dots corresponds to the same error
rate estimated running BP over 104 instances of the problem, on
graphs with N = 103 vertices. The dashed lines corresponds to the
reconstruction error of the block MAP estimator presented in Fig. 2,
which are larger than the symbol MAP ones for the same value of c
(encoded by the color of the curve).

several values of the average degree c (the nonplanted weight
distribution being uniform on [0, c]). We found indeed that
E[�s] � E[�b] (the block MAP results, previously presented
on Fig. 2, are drawn with dashed lines). Within our numerical
accuracy the transition to the full-recovery phases occur for
the same values of the parameters in the symbol and block
MAP cases; this is in agreement with a conjecture of Ref. [10];
see open question 1 therein.

VIII. FUTURE WORK

Let us conclude by giving some thoughts on how our study
could be extended. One could try to study the critical regime
for generic distributions, i.e., extend the results of Sec. VI
that were obtained only for the exponential distribution and
in the large degree limit. We expect the exponent −1/2
for the divergence of the median of the fields to be rather
universal, but the form of the vanishing of E[�] should be
much more dependent on the details of the models. One
motivation for this direction of research is the difficulty of an
accurate numerical determination of the location of the phase
transition, as discussed in Sec. V D. The numerical accuracy
problems should be less stringent further away from λ̄ inside
the partial-recovery phase, hence an extrapolation of M[Ĥ],
if one has a prediction for its functional form, should lead to
more precise determinations of threshold parameters.

It would also be interesting to further investigate the pos-
sibility of discontinuous recovery phase transitions, for which
the derivation presented in Sec. IV B would fail. We did not
find evidence for their occurrence, but we cannot exclude this
possibility because of the limited accuracy of our numerical
results. Such situations might occur for contorted weight
distributions, or if instead of Erdős-Rényi random graphs one
hides the planted matching in a configuration model with
some well-chosen degree distributions, for which Ref. [30]
unveiled the existence of multiple BP fixed points.

The coincidence of the thresholds for full recovery of
the symbol and block MAP estimators observed numerically
in Sec. VII also calls for further investigation and for an
analytical argument supporting (or disproving) it. This point is
also connected to the apparent absence of statistical to compu-
tational gaps in this problem: the block MAP estimator, being
a minimal weight perfect matching, can be determined in
polynomial time [2], and the results of Refs. [24–27] strongly
suggest that it can be asymptotically (in the large size limit)
obtained by the β → ∞ BP equations. An exact computation
of the symbol MAP estimator is instead a computationally
hard problem, but it is tempting to conjecture that the BP
algorithm with β = 1 reaches asymptotically the information
theoretically optimal reconstruction error E[�s].

A k factor of a graph is a set of edges such that each node
belongs to exactly k edges of the factor; a perfect matching
is thus a special case of this definition with k = 1. It would
therefore be interesting to study the planted k-factor problem
for generic values of k. For k = 2 the problem is related to
the planted Hamiltonian cycle that was considered in Ref. [6].
The planted k factor could also be studied using the cavity
approach and the associated belief propagation equations. At
variance with the matching case there is, for generic k, no
efficient algorithm even for the block MAP estimator; this
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opens the possibility for computationally hard phases in such
a generalization.

Another natural direction for future work is a rigorous
proof of our results, notably of the threshold given in Eq. (45)
and the critical behavior stated in Eq. (88). While the local-
weak-convergence proof of Ref. [10] can likely be extended to
generic weights distribution and to the sparse graph settings,
it is not clear how to control rigorously the solution of the
recursive distributional equations, in particular the reasoning
at the beginning of section IV B. The stochastic comparison
argument explained in remark (3) at the end of Sec. IV B and
expanded upon in Appendix B 2, should provide a scheme for
a rigorous proof of full recovery when v > 0, the much more
challenging question is to prove partial recovery when v < 0.
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APPENDIX A: THE RECONSTRUCTION ERROR FOR THE
BLOCK MAP ESTIMATOR

We prove in this Appendix that the equality of the two
expressions (26) and (30) of the average reconstruction error
when β → ∞ follows from the RDE (29). We have thus
to prove that P [Ĥ + Ĥ ′ � 	̂] = γ P [H + H ′ > 	]. We first
notice that (29b) implies that for any real x one has P [H �
x] = P [	̂ − Ĥ � x](q + (1 − q)P [Ĥ � x]), hence

P [	̂ − Ĥ � x] = P [H � x]

q + (1 − q)P [Ĥ � x]
. (A1)

Multiplying this expression by − d
dxP [Ĥ � x], which is the

density of the random variable Ĥ , we obtain

P [Ĥ + Ĥ ′ � 	̂]

=
∫ +∞

−∞

(
− d

dx
P [Ĥ � x]

)
P [	̂ − Ĥ � x]

= 1

1−q

∫ +∞

−∞

(
− d

dx
ln{q+(1−q)P [Ĥ � x]}

)
P [H � x]

= 1

1−q

∫ +∞

−∞

(
d

dx
P [H � x]

)
ln{q+(1−q)P [Ĥ � x]},

(A2)

where we performed an integration by part; the integrated
term vanishes because there is no mass at infinity in the law
of H and Ĥ .

We exploit now the other RDE (29a), that gives

P [Ĥ � x] =
∞∑

k=1

q

1 − q

[(1 − q)γ ]k

k!
P [	 − H � x]k

= q

1 − q
(e(1−q)γP [	−H�x] −1).

This yields

ln(q + (1 − q)P [Ĥ � x]) = −(1 − q)γP [	 − H < x],
(A3)

where we used the equation q = e−γ (1−q) to simplify the
expression. Inserting (A3) in (A2) gives

P [Ĥ + Ĥ ′ � 	̂] = γ

∫ +∞

−∞

(
− d

dx
P [H > x]

)
P [	 − H < x]

= γ P [H + H ′ > 	],

which proves our claim. Note that this derivation relies cru-
cially on the hypothesis that H and Ĥ have a continuous
distribution, which allowed us to introduce their density and
to perform integration by parts to connect the two terms of
(26). We expect this to be the case when the effective weight
distribution is continuous, in such a way that the minimal
weight perfect matching is unique (on a finite graph); a
counterexample is discussed in Sec. V C.

APPENDIX B: DETAILS ABOUT THE SIMPLIFIED RDE
IN SEC. IV B

We provide in this Appendix some additional details about
the simplified RDE defined in Sec. IV B; we first give a heuris-
tic justification of the velocity (37) of the leftmost particle of
a BRW, then we detail the stochastic ordering argument that
leads to the divergence of Ĥ (n) when v > 0.

1. Heuristic derivation of the velocity in the BRW process

We will present a reasoning typical of the physics literature
on front propagation in reaction-diffusion systems and equa-
tions of the FKPP type (see, for instance, Refs. [15–17]) that
leads to the expression (37) for the velocity of the leftmost
particle of the BRW.

We define the cumulative distribution function of K̂ (n) as
F (x, n) = P [K̂ (n) � x]. For a given time n this is an increas-
ing function of x, from 0 to 1 as x increases from −∞ to +∞.
The RDE (35) translates into an evolution equation for F as
the discrete time increases,

F (x, n + 1) = 1 −
∞∑

k=1

πk

[
1 −

∫
F (x − �, n)χ (�) d�

]k

,

where πk is the probability law of the random variable Z , and
χ the density of �. We assume that at large times F exhibits
a front propagating at a velocity v, and denote Fv the shape of
the front in the reference frame moving at this velocity: F (z +
vn, n) → Fv (z) as n → ∞. This gives the following equation
on Fv:

Fv (z − v) = 1 −
∞∑

k=1

πk

[
1 −

∫
Fv (z − �)χ (�) d�

]k

,
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which is equivalent to the RDE (39) on the limit random
variable L. When z → −∞ the distribution function vanishes,
in this limit we can thus linearize the equation on Fv , which
yields

Fv (z − v) =
( ∞∑

k=1

πkk

)∫
Fv (z − �)χ (�) d�. (B1)

This linear (integral) equation admits solutions of the form
Fv (z) = eθz, with θ > 0 to respect the increasing character of
distribution functions, if θ and v obey the condition

e−θv =
( ∞∑

k=1

πkk

)∫
e−θ� χ (�) d�, (B2)

which gives a relation v = v(θ ) corresponding to (37).
The linearized equation thus admits a family of solutions
parametrized by the tail exponent θ > 0, corresponding to
velocities v(θ ). The delicate point in this reasoning, for which
we refer the reader to the literature, is the justification of the
minimum velocity selection principle, namely the fact that the
relevant solution of the full nonlinear equation on Fv is the one
minimizing v(θ ), as stated in (37).

Note that the minimizer θ∗ of v(θ ) corresponds to a double
root of the characteristic equation of the linearized equation on
Fv , which thus admits as solutions the linear combinations of
eθ∗z and z eθ∗z. This enlightens the statement made in (40) for
the left tail behavior of the limit random variable L, obtained
rigorously in Refs. [20,22].

2. Stochastic ordering argument

Let us prove here the claim made in remark (3) of
Sec. IV B, namely, that the sequence of random variables K̂ (n)

defined in (35) by the simplified RDE provides a stochastic
lower-bound for the sequence Ĥ (n) of the complete RDE (48).
We recall that a random variable X is said to be stochastically
smaller than a random variable Y if and only if P [X > x]

� P [Y > x] for all x, which we denote X � Y . A very use-
ful equivalent characterization of this property [35] is the
existence of a coupling (X̂ , Ŷ ), i.e., a random vector with
marginal laws equal to those of X and Y respectively, such
that P [X̂ � Ŷ ] = 1. In other words if X � Y one can consider
that X and Y are defined on the same probability space and
that X � Y with probability one.

To simplify the comparison between (35) and (48) we
break the iteration (35) in two steps and define another se-
quence of random variables K (n), with

K̂ (n+1) d= min
1�i�Z

[
	i − K (n)

i

]
, (B3a)

K (n) d= 	̂ − K̂ (n). (B3b)

We claim that if the initial condition for Ĥ (n) and K̂ (n) is
the same, namely, Ĥ (0) = K̂ (0) = 0, then for all n � 0 one has
K̂ (n) � Ĥ (n) and H (n) � K (n). The proof is obtained by two
induction steps on n.

Suppose that H (n) � K (n); then one can couple (48a) and
(B3a) by taking the same random variables Z and 	i in
both, and by using the existence of the coupling of H (n) and
K (n) to ensure that H (n)

i � K (n)
i with probability one, for all

i ∈ {1, . . . , Z}. This yields a coupling of Ĥ (n+1) and K̂ (n+1)

such that K̂ (n+1) � Ĥ (n+1) with probability one, which proves
that K̂ (n+1) � Ĥ (n+1).

Assume now that K̂ (n) � Ĥ (n), and couple (48b) and (B3b)
by taking the same random variable 	̂ in both, the same Ĥ (n)

1
in the two alternatives of (48b), and by ensuring that K̂ (n) �
Ĥ (n)

1 with probability one. We have thus coupled H (n) and K (n)

in such a way that H (n) � K (n) with probability one, hence
yielding H (n) � K (n).

As the initial condition obviously satisfies the induction
hypothesis K̂ (0) � Ĥ (0) this proves our claim: for all n one has
K̂ (n) � Ĥ (n), and in particular if v > 0 the divergence to +∞
of the sequence K̂ (n) as n → ∞ implies the one of Ĥ (n).
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