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Abstract

We study a variant of the vehicle routing problem (VRP) arising in last-mile dis-
tribution, called the multi-depot two-echelon vehicle routing problem with delivery
options (MDTEVRP-DO). The MDTEVRP-DO involves two decision levels: (i) de-
signing routes for a fleet of vehicles located in multiple depots to transport customer
demands to a set of satellites, and (ii) routing a fleet of vehicles from the satellites to
serve the final customers. A relevant feature of the problem characterizing nowadays
delivering services is that the customers can collect their packages at pickup stations
near to their home or workplace. For the problem, we design an effective simulated an-
nealing (SA) heuristic. The new algorithm has been extensively tested on benchmark
instances from the literature and its results compared with those of state-of-the-art
algorithms. The results show that the proposed SA obtains several new best solutions
for the MDTEVRP-DO benchmark instances. Moreover, its computation performance
are greater than those of state-of-the-art algorithms for the MDTEVRP-DO.

Keywords: two-echelon vehicle routing problem, delivery option, simulated annealing
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1 Introduction

Last mile delivery is regarded as the most expensive, most polluting, and least efficient part
of the e-commerce supply chain (Gevaers et al., 2009) and has drawn extensive concerns
both in industry and academia. There is an increasing interested in implementing efficient,
innovative, and ecological last mile delivery concepts (Hagen and Scheel-Kopeinig, 2021),
such as urban consolidation centers (Allen et al., 2012), joint distribution (He et al., 2017),
crowdsourced delivery (Archetti et al., 2016; Yu et al., 2021), electric or unmanned devices
(Cattaruzza et al., 2017; Enthoven et al., 2020), drones (Carlsson and Song, 2018; Agatz
et al., 2018), robots (Boysen et al., 2018; Chen et al., 2021) and autonomous vehicles (Yu
et al., 2020)et al.

Despite the higher convenience for the recipient and the positive effects for logistics
service providers through increasing business opportunities, direct package delivery to re-
cipients’ homes or workplaces (Home Delivery, HD) imposes a variety of social costs due
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to the increased number of delivery vehicles (e.g., vans and trucks) (Kapser and Abdel-
rahman, 2020). By providing customers an option to pick up their packages (Customer’s
Pickup, CP) at a pickup facility close to their homes or workplaces bring significant ben-
efits for customers like flexibility and preferences, as well as operating cost saving for
logistics operators. With providing CP option, customers may served either by HD ser-
vice provided by a truck( electric or unmanned devices) or covered by pickup facilities
where they can pick up their packages themselves (Zhou et al., 2016). Examples of such
facilities include unattended parcel lockers and attended collection and delivery points lo-
cated outside a consumer’s home, or located at train or bus stations, local retail shops and
other locations are currently being widely used in the world (Deutsch and Golany, 2018;
Enthoven et al., 2020), and pickup-point systems is one promising concept to efficiently
design last-mile delivery systems (Savelsbergh and Van Woensel, 2016).

Designing and optimizing the last mile delivery system considering the two alternative
options has become an interesting work and has recently received considerable considera-
tions (Zhou et al., 2016, 2019, 2018; Enthoven et al., 2020; Dumez et al., 2021; Yu et al.,
2021). In urban scenario, the two-echelon logistics system plays a very important role
nowadays in the management of urban freight activities (Baldacci et al., 2013; Perboli
et al., 2021) and has received plenty of considerations since the work of Gonzales Feliu
et al. (2007). In this distribution system, intermediate depots, named satellites, are placed
between the central depot and the final customers, and the resulting distribution network
is turned into a cost effective city logistics system underlying freight management and
routing decisions in an integrated way.

Given the great value obtained by integrating alternative options and two-echelon dis-
tribution systems, in this paper, we focus on the multi-depot two-echelon vehicle routing
problem with delivery options arising in the last mile distribution (MDTEVRP-DO) pro-
posed by Zhou et al. (2018). The MDTEVRP-DO problem is highly important practical
and complex problem involving several interconnected decisions (service options, facility
locations, and two levels of vehicle routes).

To solve the MDTEVRP-DO effectively, we design a fast simulated annealing based
heuristic together with a tailored solution representation scheme which always gives a so-
lution without exceeding the capacity and working time constraint of the two-echelon vehi-
cles. The new algorithm is extensively tested on benchmark instances of the MDTEVRP-
DO and compared with state-of-the-art algorithms for the problem.

The remainder of this paper is organized as follows. Section 2 discusses the relevant
literature. Section 3 describes the problem. The simulated annealing heuristic is detailed
in Section 4. Section 5 develops the experiments and reports the computational results.
Finally, conclusions are given in Section 6.

2 Literature review

To the best of authors’ knowledge, Zhou et al. (2016) were the first to study the MDTEVRP-
DO and to introduce alternative delivery options with alternative such as HD and CP.
According to their definition, a customer should be served either by a truck with provid-
ing HD service or covered by an opened locker within acceptable distance. The decisions
involve (i) where to open the lockers and (ii) how to route the visits to the opened lockers
and customers that are not covered. A hybrid evolution search algorithm by combining
genetic algorithm (GA) and local search (LS) is presented to solve this problem.
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Several variants of delivery options appeared in previous studies, such as int the gen-
eralized vehicle routing problem (GVRP) where customers are grouped into clusters and
exactly one customer from each cluster is visited (Ghiani and Improta, 2000; Bektaş et al.,
2011; Pop et al., 2012; Hà et al., 2014; Yuan et al., 2021), the ring-star problem (RSP)
where the customers be connected to a ring through transition points (Baldacci et al.,
2007; Baldacci and Dell’Amico, 2010; Baldacci et al., 2017b,a), the covering tour problem
(CTP) where a customer demand can be satisfied by visiting the customer along a tour
or by visiting a location close to the customer (Naji-Azimi et al., 2012; Tricoire et al.,
2012; Ha et al., 2013; Allahyari et al., 2015; Flores-Garza et al., 2017), roaming deliv-
ery locations(RDL) where a customer can be served at differen locations (Reyes et al.,
2017; Ozbaygin et al., 2017; He et al., 2020), or multiple time windows (MTW) providing
alternative time windows for customers (Souffriau et al., 2013; Belhaiza et al., 2014).

Below, we focus on the closely related problems to our problem. Veenstra et al. (2018)
presented a locker location and vehicle routing problem where separate vehicle routes are
used to serve the different delivery options and designed a hybrid variable neighborhood
search(VNS) algorithm to solve the problem. Zhou et al. (2019) designed a probability
and distance-based model to describe the customers’ delivery options in customer clusters.
By adopting an approximate continuous model to simulate the route in clusters, they pro-
posed a multi-size locker location and vehicle routing problem with heterogeneous vehicles
to perform separate routes of lockers and customers with HD service. To solve this prob-
lem, a hybrid GSA procedure combining genetic algorithm and simulated annealing (SA)
was presented. Sitek and Wikarek (2019) and Sitek et al. (2021) considered post outlet,
individual customer and locker as alternative delivery options and defined a capacitated
vehicle routing problem with time windows. Hybrid approaches integrate constraint pro-
gramming(CP), mathematical programming(MP) and heuristics were presented to solve
this problem. Mancini and Gansterer (2021) expanded the alternative HD and CP op-
tions and formulated the vehicle routing problem with three delivery options considering
customers’ preferences. In this problem, customers can be served by home delivery with
a specific time window (HDTW), or CP with preferred pickup lockers or either of the two
options. A compensation is paid for customers when choosing CP as an alternative to re-
ceive the parcel at home. A large neighbourhood search (LNS)-based matheuristic and an
iterated local search (ILS) procedure were presented. Based on the approach of Mancini
and Gansterer (2021), where compensations may provide incentives for the customers to
use lockers Grabenschweiger et al. (2021) addressed the vehicle routing problem with het-
erogeneous locker boxes, in which package size and locker box size were considered. An
adaptive large neighborhood search (ALNS) was designed to solve this problem. Dumez
et al. (2021) defined the vehicle routing problem with several alternatives delivery options,
including customer’s home, shared lockers and car’s trunk. Delivery time window and cus-
tomer’s preference on these options are also considered to improve customer satisfaction.
This problem was solved with an ALNS. Jiang et al. (2022) defined a covering salesman
problem in which customers are classified into three groups, HD customers, CP customers
and either HD or CP customers. A hybrid biogeography-based optimization(HBBO) was
developed to solve this problem.
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Table 1: Summary of the works considering alternative delivery options

Reference
Problem
structure

Objective(minimization) Deliver options Main constraints Solution

Zhou et al. (2016) SE-MD
Locker open, fixed
vehicle and arc cost

HD, CP with covering
Depot and locker

capacity, route duration
GA&LS

Veenstra et al. (2018) SE-SD Locker open and arc cost HD, CP with covering
Separate routes for
HD and CP service

Hybrid VNS

Zhou et al. (2019) SE-SD
Locker open, fixed vehicle,
arc and secondary delivery

cost due to HD failure

HD and CP are
probability and

cover distance based

Heterogeneous locks, separate
routes for HD and CP service,

heterogeneous vehicle
GA&SA

Sitek and Wikarek (2019)
and Sitek et al. (2021)

SE-SD
arc cost, compensations for
alternative delivery locations

Alternative delivery locations
(without and with TW)

Locker capacity,
heterogeneous vehicles

Hybrid with CP,
MP and metaheuristics

Mancini and Gansterer (2021) SE-SD
Fixed vehicle, arc cost and
compensations with CP

HDTW, CP with covering,
either HDTW or CP

Locker capacity
LNS-based

matheuristic, ILS

Grabenschweiger et al. (2021) SE-SD
Arc cost and compensations

with CP
HDTW, CP with
fixed compensation

Package size,
box size of locker

ALNS

Dumez et al. (2021) SE-SD
Number of vehicles

and arc cost
CP, HDTW, alternative

delivery locations
Locke capacity LNS

Jiang et al. (2022) SE-SD
Locker open
and arc cost

HD, CP with covering,
either HD or CP

Locker capacity
Hybrid biogeography
-based optimization

Zhou et al. (2018) TE-MD
Fixed vehicle, arc,

connection and handling cost
HD, CP with connection cost

Limited vehicles of each
satellite, route duration

Hybrid multi-
population GA

Enthoven et al. (2020) TE-SD
Arc and connections

cost with CP
HD, CP with covering

CP occurs within covering
distance, limited vehicles

ALNS

Yu et al. (2021) TE-SD
Arc cost, connection cost with CP and
compensation with occasional drivers

HDTW, CP with connection
cost, occasional drivers

CP occurs within covering distance,
lmited vehicles of each satellite

ALNS

Notion: SE-single echelon; TE-two echelon; SD-single deopt; MD-multiple depot; TW-time window.
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The integration of delivery options into two-echelon systems has recently drawn the
attention of the researchers. Zhou et al. (2018) introduced connection cost to describe the
preference of CP service of a customer, and proposed MDTEVRP-DO where alternative
delivery options are considered in the second echelon. A hybrid multi-population genetic
algorithm(GA) is designed to solve this problem. By allowing splitting delivery in the
first echelon and routing satellites and covering locations in a same route, Enthoven et al.
(2020) defined the single depot two-echelon vehicle routing problem with CP and HD
options and, designed a LNS for its solution. More recently, the single depot two-echelon
vehicle routing problem with HDTW, CP options and occasional drivers is defined by Yu
et al. (2021), where an ALNS algorithm is propose to solve the problem.

Table 1 provides a comparison of the features of closely related works.

3 Problem description

Based on the problem description presented by Zhou et al. (2018), we updated several
parameters and describe the problem correctly and more concisely.

The MDTEVRP-DO can be formally described by a mixed graph G = (N,A,C),
where the node set N is partitioned as N = ND ∪NS ∪NP ∪NC . Set ND represents nd

depots, NS represents ns satellites, NP represents np pickup facilities and NC represents
nc customers. The arc set A is defined as A = {(d, j), (j, d) : d ∈ ND, j ∈ NS} ∪ {(i, j) :
i, j ∈ NS ∪NP ∪NC}. With each arc (i, j) ∈ A is associated a routing cost tij and a travel
time rij > 0.

Associated with the customer set NC are nc customer requests. Each customer request
i ∈ NC has an associated depot node oi ∈ ND, demand qj , and service time si = utc · qi,
where utc > 0 is unit request service time. Accordingly, each depot d ∈ ND is associated
with a set of customers denoted as NC(D), which means the requests of the customers are
dispatched from depot d.

Each customer in NC can be served by either a vehicle or picking up his/her packages
from a pickup facility. Set C represents the possible connections between customers and
pickup facilities, i.e., C = {(i, j) : i ∈ NC , j ∈ NP }. A non-negative connection cost cip is
accounted whenever customer i ∈ NC picks up packages from pickup facility p ∈ NP . cip,
calculated as dip · qi · ucp, where dip is the distance between customer i and pickup facility
p, and ucp is a connection cost coefficient.

A fleet of m1
d identical vehicles with capacity Q1

d and fixed cost U1
d are located at depot

d ∈ ND and used to transport goods to satellites. A maximum working time equal to L1
d

is associated with each first-level vehicle of depot d. A fleet of m2
s identical vehicles with

capacity Q2
s and fixed cost U2

s are available at satellite s ∈ NS to serve the customers.
The first-level consists of vehicle routes that start and end at the depot and deliver

customer requests to a subset of satellites. Each satellite s ∈ NS can be served by more
than one first-level route to consolidate the requests from depots in ND. The cost of a
first-level route is the sum of the costs of the traversed arcs plus the fixed vehicle cost of
the associated depot d. Total working time is limited, i.e., the sum of travel time of arcs
plus the handling time at satellites does not exceed the vehicle working time L1

d. And the
handling time at satellite s is noted as qs · us, where qs is the requests delivered to s and
us is the unit handling time.

At the second-level, the vehicles deliver the consolidated requests from the satellites
to individual customers and pickup facilities. Each pickup facility p ∈ NP can be visited
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by more than one second-level route that providing sharing service for the customers from
different depots.

If used, the cost of a second-level route is the sum of the traversed arcs, plus the fixed
vehicle cost, plus the sum of the connection cost associated with the customers picking up
the packages themselves. Total working time is limited, i.e., the sum of the travel time
traversed arcs, plus the service time at customers and the service time at pickup facilities
does not exceed the vehicle working time L2

s. The service time at pickup facility p is noted
as qp · utp, where qp is the requests delivered to p and utp is the service time coefficient.

The problem seeks to design the vehicle routes of both levels so that each customer
request is visited exactly once, the transportation requests delivered to customers from
each satellite correspond to the transportation requests received from the depots, and the
sum of the routing, connection, and handling costs is minimized.

4 Simulated annealing heuristic

Since the first development of simulated annealing by Gelatt (1983), SA has been suc-
cessfully applied to solve numerous challenging combinatorial optimization problems (Lin
and Shih-Wei, 2013; Lin and Ying, 2015; C and D, 2017; Lin and Ying, 2021). Although
researchers have proposed rich algorithms to solve such issues, SA’s capacity to enlarge
the solution space by exploring worse solutions is promising in addressing problems like
the MDTEVRP-DO. This study, therefore, proposes an SA-based heuristic for solving the
MDTEVRP-DO.

4.1 Solution representation

An MDTEVRP-DO solution has two parts. The first part has a set of notation symbols
used to record the service sequence of SEV. It consists of nc customers indicated by the set
{1, 2, . . . , nc}, ns satellite stations represented by the set {S1, S2, . . . , Sns}, ns/3 dummy
satellite stations (denoted as S0), np pickup stations indicated by the set {P1, P2, . . . , Pnp}
and np/3 dummy pickup stations (denoted as P0). Dummy satellite stations S0 is used
to separate routes in the second echelons, even though the capacity of the current vehi-
cle is not exceeded. The second part has nd set of notion symbols used to record the
service sequence of the FEV for nd deposits. Each set of notation symbols is used to
record the service sequence of the FEV. It consists of ns satellites indicated by the set
{S1, S2, . . . , Sns} and ns/3 dummy satellite stations S0.

The first number in the first part of a solution must be in {S1, S2, . . . , Sns}, indicating
the first satellite under consideration. Each satellite serves customers (or pickup facilities)
in the solution representation between the satellite and the next satellite. The first route
of a satellite is started by serving the first customers (or pickup facilities) after the satellite
station. Subsequent customers (or pickup facilities) are added to the current route one
after the other. The current route is ended if including a customer (or pickup facilities)
exceeds the current vehicle capacity or violates the working time constraint. The current
SEV will go back to its starting satellite station. A new SEV route will then start by serv-
ing the next customer (or pickup facilities). Customers after the pickup facility indicate
that the customer needs to pick up the goods at this pickup facility by themselves and P0

indicates that the SEV will serve the customer directly. If a segment of successive pickup
facilities exists in the solution representation, only the last pickup facility in this segment
will be used. Similarly, if there is a segment of successive satellite stations exists in the
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solution representation, only the last satellite station in this segment will be used. If a
SEV does not serve any customer or pickup facility, it does not need to be used, so there
is no need to calculate the number of SEV vehicles used and their related costs.

After parsing the notation string of the first part solution representation, we can obtain
the following information:

• Those customers or pickup facilities will be served by which satellite station.

• Which SEV will directly service customer.

• Which customers are going to pick up the goods at the pickup facility.

• If the pickup facility is used, the delivery volume it needs.

• The delivery volume, working time, and cost of each SEV.

After obtaining the related information from the first part of solution representation,
the second of solution representation can be decoded in a similar way. The first route of
a satellite station is started for each deposit by serving the first satellite after the deposit.
Subsequent satellite stations are added to the current route one after the other. If a
satellite station does not provide any goods to customers or pickup facilities, the FEV
cannot serve the satellite station from the current depot.

The current route is ended if including a satellite will exceed the FEV capacity or
violate the working time constraint, or the satellite station is S0 The current FEV will go
back to its starting deposit. A new FEV route will then start by serving the next satellite
station.

This solution representation scheme always gives an MDTEVRP-DO solution without
exceeding the capacity and working time constraint of FEVs or SEVs. However, the
capacity of satellites may be exceeded, which will result in an infeasible solution whose
objective value will be penalized. Furthermore, the number of FEVs or SEVs used may
exceed the number of available FEVs or SEVs, which will result in an infeasible solution
whose objective value will be penalized.

4.2 Illustration of solution representation

This study uses a small instance to illustrate the solution representation. The number of
depots, satellite stations, pickup facilities, and customers is two, four, eight, and twenty,
respectively. Due to the limit space, each cost and time data are not included in the tables.
The capacity of FEVs and SEVs are 200 and 150, respectively. The maximal number of
available FEVs and SEVs are 4 and 6, respectively.

The depots’ coordinates and number of FEVs are shown in Table 2. Table 3 lists
the coordinates, capacities, and number of SEVs of satellite stations. The coordinates of
the pickup facility location are displayed in Table 4. Table 5 describes the coordinates,
demands, and the provided depot nos. of customers.

Fig.1 illustrates an example of the solution representation. Fig.2 is a visual illustration
of the distribution network corresponding to the sample solution representation shown in
Fig.1.

By separating the symbol of real satellite station (S1, S2, S3, S4) in the first part, we
can obtain the following substring:

S4: 20 → 9 → 6
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Table 2: Depot Location Information

No. X-cord Y-cord Number of FEV
D1 4 32 2
D2 32 10 2

Table 3: Satellite Station Information

No. X-cord Y-cord Satellites Capacity Number of SEV
S1 14 23 200 2
S2 25 17 250 2
S3 28 17 200 2
S4 12 26 280 2

Table 4: Pickup facility location Information

No. X-cord Y-cord
P1 27 16
P2 17 21
P3 31 28
P4 20 13
P5 20 21
P6 16 16
P7 24 19
P8 21 12

Table 5: Customer location, demand and the goods provided depot

No. X-cord Y-cord Demand Provided depot
1 27 16 15 1
2 31 28 20 2
3 24 20 25 1
4 17 23 20 2
5 18 23 20 1
6 14 31 45 2
7 27 15 30 1
8 18 22 20 2
9 16 33 35 1
10 22 14 35 2
11 17 7 20 1
12 23 12 20 2
13 17 23 35 1
14 31 28 30 2
15 24 20 20 1
16 18 19 15 2
17 24 22 20 1
18 18 23 30 2
19 18 21 25 1
20 20 30 20 2
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S2: 17 → 2 → 14 → P8 → P1 → 7 → 1 → S0 → 10 → P4 → 8 → P0 → 11 → P3 →
P0 → 12 → P6 → P7

S1: 18 → 5 → 4 → 13 → 15 → 3 → 16 → 19 → P2

S3: P5

A SEV from the satellite station (S4) will directly go to customer 20, 9, and 6 one by
one, and then go back to S4. Only one SEV is needed of S4, because the SEV route will
not violate any constraint. There are two SEVs needed for the S2. The first SEV route
of S2 serves customer 17, 2, 14, P1 and go back to S2, while the second SEV route serves
10, P4, 11, 12, and then go back to S2. Because customer 7 and 1 are directly followed
P1, customer 7 and 1 will go to P1 to get their goods. Similarly, the customer 8 will go to
P4 to get goods. The first SEV route of S2 does not continue after serving customer 1 (It
is indeed pickup facility P1, because customer 1 will go to P1 to get goods), because the
dummy satellite station S0 is encountered.

Figure 1: Example of solution representation.

There are two SEVs needed for S1. The first SEV route of S1 starts from S1 and then
serve customer 18, 5, 4, 13, and go back to S1, while the second SEV route of S1 starts
from S1 and then serve customer 15, 3, 16, 19, and then go back to S1. Because it violates
the constraint (maybe the capacity of SEV capacity or working time of SEV), the first
SEV route of S1 does not serve the customer 15 after serving customer 13, Because there
is no customer will get goods at P2, there is no need for the second SEV route of S1 to
go to P2 after serving customer 19. Other pickup facilities, such as P1, P3, P6, P7, and
P8 are ignored because there is no customer directly following them. Because the satellite
station (S3) only has a pickup facility (P5) to be considered and no customer will go to
P5 to get goods, there is no need to send out SEV for S3. Therefore, five SEVs are used
for all used satellite stations.

After parsing the first part of solution representation example, the route for FEVs
can be constructed. According to the second part of solution representation example.
Therefore, we have the following two substrings:

D1: S3 → S4 → S2 → S1 → S0

D2: S2 → S0 → S1 → S3 → S4

Because S3 is no use for SEVs known from the first part solution representation, the
S3 can be ignored by FEVs of D1 and D2. The first FEV route ofD1 starts from D1 and
then serve satellite station S4, S2, and go back to D1. Because the first FEV route of D1

will violate the constraint of vehicle capacity, it does not serve the satellite station S1 after
serving satellite station S2. So the second FEV of D1 is needed to serve satellite station
S1. Because there is no other satellite station symbol after S1, the second FEV of D1 is
go back to D1 after serve satellite station S1.

9



Figure 2: Visual illustration of the solution presented in Fig.1.

The first FEV route of D2 starts from D2 and the serve satellite station S2. Because
the next symbol followed by S2 is S0, the current FEV is terminated by go back to D2

after serve satellite station S2 . The second FEV route of D2 starts from D2 and then S1

and S4 (S3 is ignored), and the go back to D2, because there is no other satellite station
symbol after S4. Therefore, four FEVs are used in total.

4.3 Initial solution and neighborhood

The initial solution is created by random. In order to generate the neighborhood solution
from the current solution

∏
, random moves are used, namely insert, swap, and invert. In

each iteration, a new solution
∏′ is selected from S(

∏
). The insertion move is executed by

arbitrarily selecting an element of
∏

and inserting it into the position immediately before
another arbitrarily selected element of

∏
. The swap move is performed by arbitrarily

selecting two elements of and then swapping their positions. The inversion move involves
arbitrarily selecting a subsequence of

∏
and then reversing the order of the subsequence.

The probabilities for choosing these moves are 1/3, 1/3, and 1/3, respectively.
Since the solution represent consists of two parts and the first part is the most im-

portant in the developed algorithm, the probability of executing moves in the first part is
increased. The probability that the first part is chosen to generate a neighborhood solution
(using the chosen move) is 0.5+0.51/(nd+1), while the probability that

∏′ is obtained by
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Figure 3: Pseudo code for the proposed SA heuristic.

performing the chosen move on one depot of the second part of
∏

is 0.51/(nd + 1) . Note
that the first symbol in the first part must be the satellite station. A move is discarded
if the first symbol in the first part is not a satellite station. In this case, a new move is
selected until a feasible solution is found.

4.4 The SA parameter and procedure

There are five parameters in the developed simulated annealing algorithm. T0 is the initial
temperature. Niter denotes the number of iterations at a given temperature. Nnonimproved

is the maximum number of successive temperature decreases at which the best solution
is not improved; i.e., the algorithm terminates when the best solution is not improved
after Nnon−improved successive temperature decreases. PF is the unit penalty factor to
determine the unit penalty for violation of various constraints; β is the coefficient of the
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cooling schedule. The algorithm is described as follows.
The current temperature (T ) is set to the initial temperature T0 at the beginning of the

proposed SA heuristic, while the best solution
∏

best is set to be the current solution (
∏

)
and OFVbest is set to OF (

∏
, UnitP ), while the OF (

∏
, UnitP ) is the objective function

used to calculate the objective function value of
∏

and UnitP is unit penalty, computed
as PFFbest. The UnitP is calculated as a unit penalty multiplied by the degree of the
restriction violation. If the volume of deliveries assigned to the satellite station exceeds
the capacity of the satellite station, the penalty cost will be calculated as the amount
of excess weight multiplied by the unit penalty cost. If the number of vehicles deployed
exceeds the number of vehicles available, the penalty cost for each depot or satellite station
shall be calculated as the excess number of vehicles multiplied by the unit penalty and the
capacity of the vehicle. Each iteration at a given temperature generates a neighborhood
search mechanism, as described in Section 4.3.

Let δ be the objective function difference between the new neighborhood solution and
the current solution, i.e., δ = OF (

∏′, UnitP ) − OF (
∏
, UnitP ). If δ < 0, then the new

neighborhood solution will replace the current solution; otherwise, the new neighborhood
solution is accepted if a random number ρ(between 0 and 1) is less than e−δ/T . If the
new solution in the neighborhood satisfies these conditions,

∏′ is replaced as the current
solution

∏
. The current temperature drops to βT , 0 < β < 1, after Niter iterations at the

current temperature T . The algorithm terminates when the best solution has not been
improved after Nnon−improved consecutive temperature reductions. The best solution(

∏
)

and its objective function value (OV Fbest)are updated when a better feasible solution
is found. The best MDTEVRP-DO solution is derived from

∏
best when the algorithm

terminates. Fig. 3 is the pseudo code of the proposed SA heuristic.

5 Computational experiments

A computational experiment was conducted to evaluate the performance of the proposed
SA algorithm in solving the MDTEVRP-DO problem. The following sections describe
the benchmark problem set, parameter calibration, and computational results of HPGM
compared with the state-of-the-art algorithm.

5.1 Test instances

This study adopts the MDTEVRP-DO dataset presented by Zhou et al. (2018). These
instances are available at http://www.vrp-rep.org. (VRP-REP-ID=2017-0026). There
are 36 instances in this data set. These test instances are generated based on nd =
{1, 2, 3} depots, ns = {4, 8, 12} satellite stations, np = {10, 20, 30} pickup facilities, and
nc = {50, 100, 150, 200} customers. The detail method to set the location of nodes (de-
pots, satellite stations, pickup facilities, and customers), capacity, cost, speed, and time
parameters, number of vehicles, etc., can be found in Zhou et al. (2018).

5.2 Parameter setting

As shown in Table 6, there were four levels for each of the five parameters to calibrate;
thus, there were 45 possible combinations of parameter values. The four levels for each
of the five parameters were first determined by reference to several related studies (Lin
and Shih-Wei, 2013; Lin and Ying, 2015; C and D, 2017; Lin and Ying, 2021), and then
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Table 6: Parameters and Values Tested

Parameter Values
T0 10,15,20,25

Niter 1500L∗,2000L, 2500L, 3000L
β 0.925, 0.95, 0.975, 0.99

Nnon−improved 5,10,15,20
PF 0.003B!, 0.005B, 0.007B, 0.008B

L: The length of solution representation
B: Best objective function value

fine-tuned in a pilot experiment with six randomly generated test instances. To more
efficiently determine the best combination of the five parameter values, Type B of the
Taguchi L16 orthogonal experimental design, which includes 16 parameter combinations
(see https://www.york.ac.uk/depts/maths/tables/l16b.htm), was applied to six additional
randomly generated test instances. For each parameter combination, the proposed SA
algorithm was run independently 10 times for each of the six generated test instances.

The average relative percentage deviation (ARPD) from the best solution of the six
generated instances is given in Tables 7 and 8 as the response variable, in which the relative
percentage deviation (RPD) was computed as follows:

RPDi = (Objiave −Objbest)/Objbest × 100%

where, Objiave denotes the average objective function value of a specific problem in-
stance i (i ∈ 1, 2, · · · , 6)obtained in 10 runs using the proposed SA algorithm with a
specific parameter combination and the Objbest is the minimum objective function value
of a specific problem instance obtained in 10 × 16 = 160 runs using the proposed SA
algorithm with all parameter combinations.

Table 7 shows the ARPDs obtained by different levels of each parameter. As can be
seen in Table 8, the most important parameters among the five parameters is Niter which
had the largest ARPD ranges. That is, when the number of solutions evaluated was
increased, better solutions could be obtained at the cost of increased computation time.
T0 and β are the second an third important parameters. It is hard to separate the influence
of T0 and β. T0 will determine the current temperature T in the algorithm. T affects the
probability of accepting a worse solution. Generally, the higher the value of T , the larger
the probability of accepting a worse solution will be. As a result, the convergence of the
algorithm is slower. On the other hand, if the value of T is too small, the probability of
accepting a worse solution will be small and the algorithm is more likely to be stuck at
a local optimum. Smaller β will result in current temperature T reduced quickly, which
larger β will result in current temperature reduced T slowly. Nnon−improved will influence
of the termination of SA. Higher will Nnon−improved lead more solutions evaluated in the
algorithm at the expense of computing time. The reason why PF is the least important
parameter may be the tested values are all suitable. PF is too large, then the algorithm
tends to reject infeasible solutions and is prone to being trapped in local optima. On the
other hand, if PF is too small, then the algorithm is more likely to accept an infeasible
solution.

To balance solution quality and computation time in this study, the parameter values
of T0, Niter, β, Nnon−improved and PF were set to 15, 3000L, 0.975, 20 and 0.003B,
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Table 7: Orthogonal array and the obtained ARPDs

Experiment No. T0 Niter β Nnonimproved PF ARPD
1 10 1500L∗ 0.925 5 0.003B 10.0539
2 10 2000L 0.950 10 0.005B 10.2886
3 10 2000L 0.975 15 0.007B 5.1510
4 10 3000L 0.990 20 0.009B 4.2133
5 10 1500L 0.950 15 0.009B 6.8399
6 10 2000L 0.925 20 0.009B 7.2279
7 10 2000L 0.990 5 0.005B 4.7322
8 10 3000L 0.975 10 0.003B 3.8797
9 10 1500L 0.975 20 0.005B 6.1434
10 10 2000L 0.990 5 0.003B 5.6174
11 20 2500L 0.925 10 0.009B 5.2240
12 20 3000L 0.950 5 0.007B 4.0662
13 25 1500L 0.990 10 0.007B 8.3734
14 25 2000L 0.975 5 0.009B 5.5881
15 25 2500L 0.950 20 0.003B 3.9917
16 25 3000L 0.925 15 0.003B 4.3522

Table 8: ARPDs obtained by different levels of each parameter

Level T0 Niter β Nnon−improved PF
1 7.4267 7.8527 6.7145 6.1101 5.8856
2 5.6699 7.1805 6.2966 6.9414 6.3791
3 5.2628 4.7747 5.1906 5.4901 6.2046
4 5.5763 4.1278 5.7341 5.3941 5.4663

Range 2.1639 3.7248 1.5239 1.5473 0.9128
Rank 2 1 4 3 5

respectively.

5.3 Results obtained

The performance of the proposed SA heuristic is compared with the HMPG proposed by
Zhou et al. (2018). The HMPG was implemented using Visual Studio 2013 and run at
PC with an Intel 4790, 3.60 GHz processor and 32 GB of memory running under the
Windows 7 operating system. The proposed SA heuristic is implemented using Microsoft
Visual C++ 2019 and runs on a computer equipped with an Intel(R) Xeon(R) CPU E3-
1245 v6 @ 3.70GHz and 64 GB of RAM under the Windows 10 operating system.

Due to the different hardware used by the three solution methods, a conversion of
the computational time is conducted in order to allow a fair comparison. Refer to
https://www.cpubenchmark.net/singleThread.html, which shows that each different hard-
ware has a different CPU single thread performance (STP). In line with the information
on the website, Table 9 summarizes the STPs of the different hardware discussed in this
paper. Note that the higher the STP value, the faster the hardware will operate.

Table 10 shows the comparison result of HMPG and SA. Even though the computer
used for SA is a bit faster than that of HMPG, the computational time required for SA is
much smaller than those of HMPG.

The new computational results of HMPG is obtained by modified some errors in com-
putational of objective function values. And the termination condition is the original
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Table 9: A summary of the STP of the different hardware discussed in this paper

Solution method Hardware used STP
The proposed SA Intel(R) Xeon(R) CPU E3-1245 v6 @ 3.70GHz 2455

HMPG Intel 4790, 3.60 GHz (8 Core) processor with 32 GB of memory 2230

maximal computational time and the maximum iteration with the best solution not im-
proved and set it to be 100 iterations for HMPG.

The computational time of SA is longer than the those of HMPG only in two questions.
The overall average time required by SA is almost only half of the by HMPG.

Furthermore, all 36 benchmark problems are improved by the SA. The improvement
rate (IR) of the best solution obtained among 5 runs is computed as IRi

best = (HMPGi
best−

SAi
best × 100%), where HMPGi

best and SAi
best denote the best objective function value of

a specific problem instance i(i ∈ 1, 2, · · · , 6) for HMPG and SA, respectively. Similarly,
the improvement rate (AIR) of the average solution obtained among 5 runs is computed
as AIRi

ave = (HMPGi
ave − SAi

ave)/HMPGi
ave × 100%, where HMPGi

ave and SAi
ave

denote the average objective function value of a specific problem instance i for HMPG
and SA, respectively. It be computed from the Table 10, the proposed SA can obtain
−4.39% ∼ 13.24% and −0.85% ∼ 11.63% improvement rates (negative values denote that
some solution obtained by SA is worse than that of HMPG) for the best solution and
average solutions obtained among 5 runs, respectively.

In a final step of numerical analysis, one-tailed paired t-tests were performed on the
best and mean IRs to check SA, and it was found to be significantly superior to HMPG.
The statistical results are summarized in Table 11. From Table 11, it can be seen that
at α = 0.05 confidence level, the statistical tests prove that the proposed SA algorithm is
significantly superior to HMPG algorithm in terms of best and mean IRs for test instances.

Analyzing the IRs from a different angle, Figure 4 graphically compares the IR values
of SA over HMGP for different model parameters. The SA have higher improvement rates
with the number of depot is one; the number of satellite stations is 8, the number of pickup
facilities is 10, and the number of customer is 150.

Figure 4: Visual representation of IRs under different problem parameters.

6 Conclusions and future research

In this paper, we considered the Multi-Depot Two-Echelon Vehicle Routing Problem
with Delivery Options, a city logistics problem arising in the last mile distribution of
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Table 10: Computational results for the problem sets (Zhou et al. (2018))

Instance nd ns np nc
HMPG SA

Best Average Time (min) Best Average Time (min)
I1-4-10-50 1 4 10 50 2882.3 2896.6 4 2823.0 2839.0 0.6
I1-4-10-100 1 4 10 100 4920.3 5207.8 8.4 4851.6 4907.8 1.3
I1-4-20-50 1 4 20 50 3245.4 3249.5 7.9 3106.2 3163.4 0.9
I1-4-20-100 1 4 20 100 5110.1 5133.8 9.3 4568.3 4831.2 2.1
I1-8-10-100 1 8 10 100 4589.4 4608.6 6.5 4479.7 4557.2 1.6
I1-8-10-150 1 8 10 150 7063.8 7152.8 14.4 7027.1 7196.1 3.2
I1-8-20-100 1 8 20 100 5214.6 5268.3 9.1 5107.5 5202.4 2.9
I1-8-20-150 1 8 20 150 7602.9 7685.9 13.3 7354.1 7563.2 4.4
I1-12-20-150 1 12 20 150 7166.7 7288.3 9.2 7222.4 7311.7 6.5
I1-12-20-200 1 12 20 200 9824.2 9908.1 10.9 9811.2 10035.3 10.5
I1-12-30-150 1 12 30 150 7492.9 7900.4 15.4 7335.0 7643.4 11.4
I1-12-30-200 1 12 30 200 9881.0 10114.2 16.4 9548.6 9808.7 14.1
I2-4-10-50 2 4 10 50 2697.0 2730.0 4.4 2439.2 2485.4 0.7
I2-4-10-100 2 4 10 100 5252.6 5257.9 5.2 5495.7 5551.4 1.1
I2-4-20-50 2 4 20 50 3274.5 3407.3 8.4 2978.2 3041.0 1.1
I2-4-20-100 2 4 20 100 5911.5 5936.3 8.0 5444.7 5600.3 1.9
I2-8-10-100 2 8 10 100 5459.7 5499.5 11.5 5305.0 5388.3 1.6
I2-8-10-150 2 8 10 150 8795.2 8987.1 13.3 8398.0 8451.8 3.3
I2-8-20-100 2 8 20 100 4972.5 5071.0 9.7 4773.3 4873.0 2.9
I2-8-20-150 2 8 20 150 7909.7 8123.2 8.8 7871.5 8058.0 5.3
I2-12-20-150 2 12 20 150 7275.8 7476.5 9.5 7415.1 7524.9 7.5
I2-12-20-200 2 12 20 200 9947.6 10326.0 13.0 9614.6 9925.5 10.5
I2-12-30-150 2 12 30 150 7927.2 8186.8 18.2 7535.0 8104.9 9.3
I2-12-30-200 2 12 30 200 10148.9 10369.9 18.3 10187.9 10510.2 12.8
I3-4-10-50 3 4 10 50 3501.8 3549.1 5.5 3468.4 3530.5 0.8
I3-4-10-100 3 4 10 100 6315.2 6548.4 11.6 6257.5 6325.5 1.7
I3-4-20-50 3 4 20 50 3526.2 3573.4 5.8 3311.4 3355.4 1.3
I3-4-20-100 3 4 20 100 5902.5 5951.2 9.3 5249.0 5404.7 2.7
I3-8-10-100 3 8 10 100 4983.0 5305.0 10.4 4988.7 5050.5 2.3
I3-8-10-150 3 8 10 150 7384.8 7403.2 13.8 7574.5 7702.3 4.2
I3-8-20-100 3 8 20 100 5307.5 5378.3 12.4 5156.4 5215.3 3.6
I3-8-20-150 3 8 20 150 8001.7 8127.4 11.8 7645.9 7768.5 5.6
I3-12-20-150 3 12 20 150 7659.6 7804.7 13.8 7453.3 7543.8 9.2
I3-12-20-200 3 12 20 200 11671.6 11947.8 18.4 11106.3 11626.7 14.3
I3-12-30-150 3 12 30 150 8164.9 8357.5 18.7 7779.8 7941.3 11.4
I3-12-30-200 3 12 30 200 11106.5 11360.0 18.4 10174.8 10610.7 15.7
Average 6613.6 6752.5 11.2 6412.7 6573.6 5.3

Table 11: Statistical results from paired-t tests(α = 0.05)

Type SA vs. HMPG

Best RPD

Paired difference (IR) 3.6609
t-value -5.4074

Degree of freedom 35
P -value 0.0000

Mean RPD

Paired difference (IR) 3.1598
t-value -5.4335

Degree of freedom 35
P -value 0.0000
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e-commerce. A feature of the problem is that customers may provide different delivery
options, allowing them to pick up their packages at intermediate pickup facilities. The
problem is complex and highly constrained as it involves a number of different, intercon-
nected decisions (service options, facility locations, and two levels of vehicle routes). To
solve the problem, a fast Simulated Annealing heuristic algorithm was proposed.

The algorithm was extensively tested on benchmark instances from the literature and
compared with the Hybrid Multi-Population Genetic (HMPG) metaheuristic proposed by
Zhou et al. (2018). The results obtained show that our SA heuristic is effective and efficient
in solving the MDTEVRP-DO. In particular, it obtains 34 new best solutions for the 36
MDTEVRP-DO benchmark instances. Moreover, it requires a shorter computational time
compared to the HMPG proposed by Zhou et al. (2018).

Finally, real-world last mile distribution services pose several challenging extensions,
such as time window constraints, heterogeneous vehicle fleet, and time-dependent travel
times, to name a few. Our future work will therefore go in the direction of considering
these extensions and other important features of this class of problems.
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