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MINIMAL GEVREY REGULARITY FOR HORMANDER
OPERATORS

ANTONIO BOVE AND MARCO MUGHETTI

ABsTRACT. We prove a minimal Gevrey regularity theorem for Hormander’s
sum of squares type operators (1.1), improving the result of Derridj and
Zuily [10]. The Gevrey index given here is optimal, in the sense that
there are operators of this type that just attain that regularity and not any
better.

1. INTRODUCTION

Consider the following operator

N
2.
(1.1) P(x,D) = > (X;(x, D)) +iXo(x, D) +g(x),
j=1
where g € G*(Q), the operators X;(x, D), j =0,..., N, are vector fields in
Q with real G* coefficients having the form

- 10
(12) X;(x,D)= Y ap(x)D,  Dy=77—
k=1

= - i =0,1,...,N,
i 0xp J

We remark that i Xo(x, D) is a real vector field in the usual sense. We point
out that when the vector field Xy is complex the problem is much more
involved. We refer to [16], [20], [3] for papers devoted to that case.

If X, Y, are two vector fields we write [X,Y], the commutator, or Lie
bracket, of X and Y as

[X,Y] =XY -YX = » ((Xb;) - (Ya;)) Dj,

n
j=1
where X(x, D) = 27:1 aj(x)D;,Y(x,D) = ?:1 bi(x)D;.

Date: January 25, 2023.
2020 Mathematics Subject Classification. 35H10, 35H20 (primary), 35B65, 35A20,
35A27 (secondary).
Key words and phrases. Hormander operators; Gevrey hypoellipticity; subelliptic
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2 ANTONIO BOVE AND MARCO MUGHETTI

Let r be a positive integer and let iy,...,i, € {0,...,N}. Then we
denote by / the multiindex I = (iy,...,i,) and by X; the r times iterated
commutator

X=X, [ X, .- [ X X5, ] - - 11

We denote by |/|, according to Rothschild and Stein, [24], the weighted
length of the commutator X; defined as

(13) || =#{iglig>1,6=1,..., 5y +2#{i;|i¢=0,0=1,...,r}.

We assume that the vector fields Xo, . .., Xy verify Hormander hypothesis,
1.e. that

(H) For every xo € Q, there is a neighborhood U = U,, € Q and
a positive integer m, depending on U, such that the vector fields
Xo, ..., Xy, as well as their commutators of length < m, generate
the n-dimensional Lie algebra on U.
Hormander, [12], and Rothschild and Stein, [24], proved that the operator
(1.1) satistying hypothesis (H) is C* hypoelliptic and that the following a
priori estimate holds:

N
(L4 lull2 + Z 1 XiXjullo + I Xoullo < C (lPullo + llullo) ,
i,j=1
where u € C° (Q1), Q1 € Q, m denotes the minimum length of the Poisson
bracket needed to generate the Lie algebrain ; and C = C(€2) is a suitable
positive constant.

Let us first recall the definition of Gevrey class and of Gevrey hypoellp-
ticity on an open subset U of Q.

Definition 1.1. Let Q be an open subset of R". We say that the function
u € C*(Q) is in the Gevrey class G*(Q), with s > 1, real number, if for
every compact set K C Q there is a positive constant Ck such that

|0%u(x)| < C}gma!s, for every x € K,

and for every multiindex «.
We also define G () as the intersection G*(£2) N C;°(€2).

Remark 1.2. We observe that if u € G(S2), then there exist positive con-
stants, M, C, such that, for every & € R", we have

(1.5) li(&)] < M€l

Definition 1.3. We say that the operator P is C® (Gevrey s, s > 1) hypoel-
liptic in the open subset U C Q if for every u € 2’(U) and for every open
subset Uy C U, Pu € C®(U;y) (Pu € G*(Uy)) implies that u € C*(Uy)
(u € G*(Uh)).
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The purpose of this paper is to give the Gevrey regularity of the solutions
to Pu = f, f real analytic, implied by (1.4). We point out that this is
the minimal Gevrey regularity for this type of equations in the sense that
it is obtained for every operator in the class. However it not difficult to
make examples of operators having a higher regularity; for instance the
anharmonic oscillator

Av + X294 VAL, (¢, x") =x e R,

has minimal Gevrey regularity g, but is analytic hypoelliptic. An important
role is played by the symplecticity of the characteristic manifold. However
it is known that even in two variables a symplectic characteristic manifold
does not imply analytic hypoellipticity (see G. Chinni, [6], for a result in
this case.)

On the other hand the Baouendi, Goulaouic operator,

Ppg(x, D) = D3 + D3 +x2D2,

and P in (1.6) give instances of operators for which the minimal regularity
is optimal.

In this paper we prove the theorem

Theorem 1.4. Let xy € Q and assume that (H) holds. Denote by U the open
set associated to xq in (H) and by m the maximum length of the commutators
generating the Lie algebra on U, then the operator P is G° hypoelliptic on
U, for s > m.

We explicitly remark that Theorem 1.4 coincides with Theorem 1.6 of
Derridj and Zuily, [10], when the Lie algebra is generated using only the
vector fields Xi,..., Xy. On the other hand Theorem 1.4 is sharper than
Theorem 1.5 of [10]. More precisely when Xj is needed to generate the Lie
algebra we get a Gevrey regularity being one half of that found in [10].

Recently Derridj, [11], studied the influence of the vector field X on the
regularity of Gevrey vectors for P.

As a consequence once we agree to weigh the vector fields according to
(1.3) the Gevrey minimal regularity is given by the length of the longest
bracket generating the Lie algebra, no matter if this uses the vector field Xy
or not.

Remark 1.5. The hypoellipticity defined in Definition 1.3 is the analytic
(Gevrey) hypoellipticity in distributions. Fix a number s > 1; an analogous
definition can be given in the ultradistributions space of order s, Pty (the
dual space of G3,) i.e. in Definition 1.3 we take u € 2% (U).

However in [7] it has been shown that in general there may be an ul-
tradistribution u € Y \ &', for a suitable s > 1, such that Pu € C*,
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i.e. Hormander bracket condition does not imply C® hypoellipticity in
ultradistributions.

Actually Cordaro and Hanges in [7] prove Lemma 2.1, which, when
applied to an operator Q of the form given in (1.1), satisfying Hormander
hypothesis, can be stated as

Lemma 1.6. [[7], Lemma 2.1] Let Q be as in (1.1) satisfying the assumptions
of Theorem 1.4 and s > 1. Assume that Q is Gevrey s hypoelliptic in Q in
distributions. Then 'Q is C* hypoelliptic in LY,

Assume that P satisfies the assumptions of Theorem 1.4, then ' P satisfies
the same assumptions. Assume that s > m. By Theorem 1.4, applying
Lemma 1.6 to ' P, we obtain that P is C* hypoelliptic in DY, The same
argument of the following sections then can be used to show that P is G*
hypoelliptic in 9{3},]‘01’ s> m.

We are grateful to one of the referees for suggesting to include this remark.

Next we give some examples to illustrate the role of the vector field Xj.
1. Let P denote the operator

n—1
(1.6) P = Z D2 +ix{D,, n>2,
j=1

where k is a positive integer. Theorem 1.4 implies that P is Gevrey s
hypoelliptic for s > k + 2. Okaji, [21], proved that the regularity G¥*? is
optimal when n > 3 and k is even or kK = 3. On the other hand if n = 2 or
k = 1 one has the G? regularity ([21].)

Whenn > 3 and k = 2 there is an elementary proof that the value k+2 = 4
gives the optimal regularity. To this end we use an explicit representation

of the solution of the equation Pju = 0. Define
+00 x2 1 11
u(x) — / el’x,ﬂ'e—a)Tl‘r§+zx2‘r1—‘rZ dr
0

P s . . . . .
where w = €'+, 7 = ¢'% and x is in a neighborhood of the origin. We have

+0o0 1
|D u(0)| = / le™ dr ~ 014,
0

This shows that the theorem gives the optimal regularity, however in partic-
ular cases a better regularity can be attained.
2. In the next example we show that the vector field Xy has no influence on
the hypoellipticity of the operator.

Consider now the operator

(1.7) Py=D}+x VD24 ixkDy, gz 2.



MINIMAL GEVREY REGULARITY 5

The Lie algebra is generated by brackets of length equal to » = min{k+2, g}.
Theorem 1.4 gives then that P, is Gevrey r hypoelliptic. However in section
4 we prove that P; is actually C hypoelliptic for any ¢, k. This is no
surprise, since even for sums of squares the operator may actually attain a
higher regularity than the minimal.

The technique of proof consists in using iteratively the a priori estimate
for P. Next we give a sketchy idea of the proof, neglecting errors and the
more gory details.

We start with the norm ||X12|D|p @ptllo, where ¢, is a cutoff function of

the type defined in Definition 3.2 and |D| means (—A)%. Applying the a
priori estimate (1.4) we are led to compute
(1.8) IPIDIPgpullo < D17 @pPullo + I[P, D17 @plullo.
The first term is good since Pu = f € G™ has the good estimates by
assumption. Consider the second. We have
N
1P, IDP@plullo < 3 (2011, IDI” @, lulo
j=1

+ 111X, [X5,1D17 g lulo).
The norms containing the double commutator are treated as the first norm.

Since || X;[X;, |[D|Ppplullo < || X;[X;, ID|PT1epullo + |1 X;1DIP[X;, ¢plullo,
we have

11X, 1D @, lullo < C(pI1X; 1DV @pullo +11X;1D17 @) ulo)
1 -1 1 1
< Cy(pIIX; (D) DI gpullg + X, (DY DI @ullo)
_1 1,
< O (pIIPIDI g pullo + | PIDI % @ullo).

The last estimate is a consequence of Lemma 2.1. Here we forgot about the
support of the functions |D|P_%<ppu, |D|p_% @,u. This issue is addressed
in Proposition 3.5.

The latter terms have the same form as that in (1.8), where |D|” has been
replaced by |D|p‘$ paying a factor p. Iterating the argument we get that
|D|P becomes p™? which yields the desired Gevrey order.

2. SoOoME PREPARATIONS

For the proof we need a slight modification of the a priori estimate (1.4).
More precisely, if w € Cg" (Q), w = 1 in Q;, we consider the vector fields
wX;,j=0,1,...,N. We observe that (1.4) applies to the vector fields wX;,
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for every u € C;°(Q1). From what follows it shall be apparent that we may
assume that the vector fields X; are compactly supported.

Lemma 2.1. We use the same notations of the preceding section and assume
that the vector fields X; have compact support. Then we have the a priori
estimate

N N
@) ull2 + ) (IAX ullo+ 11X Aullo) + > 11X X;ullo + 1 Xoullo
=1

J i,j=1

< C(I1Pullo + llullo) »

1
where A = (D)i, (D) = (|D|2 +1)2andu € Cy (L), where, as in (1.4),
Q € Q.

Proof. For j =1,..., N consider the norm
| AXjull3 = (AX,u, AX u).
We have
<AXJ'M, AX]'M> = (XjAu,AXju) + <[A, Xj]M,AXjM)
= <AXJAM, X]Lt> + <A[A, Xj]l/t, ijt>
= (X;A%u, X;u) + ([A, X;]Au, Xju) + (A[A, X;]u, X;u)
= (N%u, X7u) + (N°u, g Xu) + ([A, X1 Au, Xjuy + (A[A, X u, Xju),

where we wrote Xj* = X; + g, g, denoting a smooth function.
Since

1Xjull3 = (X Xy, ) < [, )] + (X, g0
1
< 1X2ul + lll + Xl + —Collull,
Taking £ < 1 we obtain that
1Xjully < Cr (1Culld + 1)

Moreover the operators [A, X;]A, A[A, X;] are pseudodifferential operators
of order % so that

<AXju,Ale/t>
< (A%, X2+ (N2, X)) + (LA, X1 A, X )|
+ CALA, X Ju, Xgu)| < Co (11Xl + ] )
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To treat the term || X jAullg, we observe that
(2.2) [1XjAullo < IAX;ullo + 11X}, Aullo < [[AXjullo + Cllul| 1.
Hence, using estimate (1.4) we conclude as desired. O

Proving Theorem 1.4 for s = m is enough, since Theorem 3.1 in Métivier
[18] implies that from G hypoellipticity we deduce G* hypoellipticity for
s > m, provided the coefficients of the operator have the same regularity.

From now on we denote by U, the open set Q in (1.4). Let f € G™(U)).
Because of Hormander’s theorem we may consider a function u € C*(Uy)
such that

(2.3) Pu=f, inUj.

Let us show that we may reduce ourselves to the case where u, f and the
coeflicients of the vector fields in P have compact support contained in Uj.

Let y € G (Uy) = C5°(Uy) N G™(Uy), be such that y = 1 in Uy, where
U, € U;. Then

24) P(xu) = xf + [P, xlu € G" (V).
Moreover we have that yu € C;°(Uy). Hence we have to solve the problem
Py = h, in U],

where h € C°(Uy) N G™(Uy), for v € C(Uy). Furthermore we may
suppose without loss of generality that the coefficients of the vector fields in
Paswellas g (seeeq. (1.1)) are functions in G/ (U1). Infactif a denotes one
of these coefficients, we may write a = a + (1 — ¢)a, where ¢ € G{'(Uy)
and ¥ = 1 on K = supp y. We immediately see that the contribution of the
1 — ¢ part of a vector field is zero when applied to v = yu. For the sake of
simplicity we revert to the old notation with u € C°(K),

(2.5) Pu = f € Cy(Uy) N G"(U>),

and g (see equation (1.1)) as well as the coefficients of the vector fields
belong to G’ (Uy). Finally we point out that estimate (2.1) holds for any
u € C;°(K) when the vector fields have coefficients with compact support,
since the cutoff on the coeflicients of the vector fields has no effect when
u € Cy°(K), by (2.2).

3. PROOF OF THE THEOREM

The main tool of the proof is the estimate (2.1). The basic idea of the
proof is to replace u in the left hand side of (2.1) with D”pu, where ¢
denotes a suitable cutoff function and D? denotes a derivative of order p.
Our strategy is to shift derivatives from u to the known Gevrey function Pu.
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This requires some definitions to make things more precise and allow for an
inductive proof.

In what follows we are going to denote by C;, j = 0,1,2,..., suitable
positive constants independent of p. It is understood that these constants
may change from one proof to another, even if the subscript does not.

Throughout the proof we will use a particular type of cutoff functions
supported near a point xo € U,, defined e.g. in Ehrenpreis [9] (see also
Hormander [14]).

Lemma 3.1 (Lemma 2.2 in [14]). Let K be a compact subset of R", R,r > 0
and p a positive integer. Then one can find a function ¢ € C° equal to 1 on
K, such that ¢ vanishes at all points with distance larger than r from K and

||
(3.1) ID%¢(x)| < Cl*I*! (?) plel, forlel <R(p+1),

where C is a positive constant depending on n.
Definition 3.2. For any natural number p, denote by ¢, = ¢,(x) a function
in C3°(R") such that

(S) ¢, is equal to 1 in a small neighborhood, W, of xo € U, and
supported in W, € U, (see (2.5),) where W, denotes the set of all
points with distance from W less or equal to r, r suitably chosen.

We say that ¢, is an Ehrenpreis sequence of cutoff functions if there is a
positive constant R such that for |a| < R(p + 1) we have, for every p

(3.2) 105 @p ()] < T plel,
where C, > 0 and independent of p.
Next we define the type of derivatives we take on u.

Definition 3.3. Let p denote a natural number, g a rational number with
q < p, Ry > 0. We denote by Ag the class of smooth functions, Ly (&), in
S’li o(R") (see Definition A.7 and [15] eq. (18.1.1)",) such that

(3.3) |3qu(é:)| < C11\+|a|p|a|<§>fJ—|cx|’

forevery a, |a| < Ro(q+1), where Cp denotes a positive constant indepen-
dent of p, q, a and L. Since the estimate (3.3) matters when p is large, we
may choose R large enough to allow a fixed shift in the multiindex «.

We remark that £%, with |a| = ¢, belongs to AS and the same holds for
C™1]£|7 and C1(¢)1, for a suitable positive constant C independent of g.
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Definition 3.4. We define the norm (see (2.1))

N N
B4 Ml = Nl + > IXull’ + > IXe Xl + | Xoull3,
"=l "=l
foru e S(R").
In what follows we are going to prove an estimate of the form
1
Ly (D)gpulll < CF p™,

where g < p, L, € AZ, Cy = C4(Cy) is a positive constant independent of
P, q and @, is a cutoff function of the type defined in Definition 3.2.

The above estimate implies that # € G™ in a neighborhood of the point
xo and ultimately that u € G™(Uy).

For technical reasons we are going to prove an estimate of the form

k k+2 1
(3.5) Ly (D)o ull| < Cprmar! pmavhee

where gol(,k) = 0% ¢, with || = k, Cy does notdependon k, g, p, mg+k < mp
and o is a positive constant independent of ¢, p.

This is done by arguing by induction with respect to g: we start with
g = 0. Lo is a bounded operator in L?(R") whose norm depends only on
Cx in Definition 3.3 and on a fixed power of p.

Then for k < mp we have that |||<,01(,k)u I < C**1pk+2 where C is a suitable
constant depending on C,, (see definition 3.2) and on the problem data. This
allows us to obtain (3.5) when ¢ = 0 and o is a suitable positive number
depending on n.

Our induction has steps of % and thus it is convenient to write g as §/m
and p as p/m. Then the relation mg + k < mp becomes §+k < p. Assume
that (3.5) is satisfied for every ¢’ < § — 1 and k such that §' + k < p. Then
we have to prove that (3.5) holds for every ¢’ < ¢ and k suchthat §’+k < p.

It is convenient to simplify the notation a bit by writing L, (D) as Lz(D),
where g = G/m. Hence the order of L;(D) is G/m.

Estimate (3.5) is then rewritten as

el
(3.6) s (D)o ulll < CpH2T pa+hee,

In order to apply (2.1) we use the cutoff function y of equation (2.4). We
have

G7 LD ulll < lxLa(D)e' P ulll + 11 = X)Lz (D)o ull.

We are going to apply (2.1) with u replaced by XLq(D)(,Ol(yk)u to the first term

on the right hand side above. Before doing this let us discuss the second
summand above:
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3.8) (1= x)Lg(D)e' ull?
(3.8) (1 =x)Lg(D)gp ull

N
k k
= (1= La(D)ep uls + > 1X;(1 = ) Lg(D)ey ull}

N
k k
+ 2 IXX; (1= ) Lg(D)ep ullf + 1 Xo(1 = x) Lg (D)l ull3.
ij=1
Consider the first term on the right hand side and apply Lemma A.3 to
Lq(D)gDI(,k) remarking that y = 1 on U, and that, by (S), supp ¢, C U>. We
get

k
11 =) Lg(D)y ull 2 = (1 = X) R gxull 2
< (1= Rz prulli < CollRggrulli < CCE P T ullo,

where the last estimate is due to (A.14).

Consider next || X;X;(1 — X)Lq(D)¢§,k)u||o. Again by Lemma A.3 we
have

1X:X; (1 = x) Lg (D)l ullo = 1X:X; (1 = x) Ry g it lo.

Letus write X; X as a finite sum of terms of the form ad,d, and cd,. Then we
have to estimate a finite number of norms of the form [|ad,0,(1-x) R . xt|lo
and [|cOe(1 = x)Rg 4xullo- Let us discuss the first norm, the other being
completely analogous. We have

laded, (1 = x)Rgpkullo
< |la(l = x)Rj4k0c0rullo + |al0edr, (1 — x)Rg,e.k]ullo-

The first term is bound as C‘XC(’)‘”pk*q*"llullz by Lemma A.3. As for the
second term we observe that it is a finite sum of terms containing an order
zero pseudodifferential operator whose symbol is a x-derivative of order at
most 2 of the symbol of R , x. By (A.13) of Lemma A.3 and Theorem A.8,
we obtain an analogous estimate CaC(‘;‘+1 PR |ul|o.

The other terms in (3.8) are treated analogously and we skip them. Hence

the term in (3.8) has the estimate (3.6). We are left with the term involving
the function y in (3.7). By (2.1) we have

k k k
ILeLa(D)ef ulll < C(I1PxLa(D)ey ulo + e La(D)el ull).

The last term is bound by CX||Lq~(D)g0§,k)u||o.
Consider then ||P/\/L,;(D)90§,k)u||0. We have

k k k
1PxLs(D)e P ullo < CLIPLA(D)@ ullo + || [P, x1Ls (D)@' ullo.
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Consider the second term, containing
N

[Pox] = 3 (201X, + [X, (X x11) + [Xo. x].
j=1
Thus

I[P, x1Ls (D)o ullo

Mz

(200X x1X,Lg (D)} ullo + 11X, [X; X11Lg (D)o} ulo
j=1

+11X0. X1 Lg(D)e ullo
N

<c1 Y (IXLaD)ef ullo + ILg (D)o} ullo):
j=1

Hence we are left with the estimate of norms of the form || X;L;(D) go(k)

By Lemma A.6 we have

ullo.

I1X5Lg(D)elFullo = KIX (D) (DY L (D)ol ull
= KI|X;(D)" Lg—1 (D)o ullo.
To obtain a term present in the expression (3.4), we observe that
(3.9) KIIX{(D)n Ly (D¢ ullo
< KI1X;Lg-1(D)g} ull 1 + KI|[X;, (D) Lg-1 (D)} ullo
= KIIX;Lg-1(D)ey ull 1 + K[| [X;, (D)7 (D)~ (D) L1 (D)l ullo
< K1 (I1X,Lg-1 (D)o ull . + 11 (D)ol ul 1 ).

where we used the fact that [ X}, (D)#] (D)‘% has order zero and is contin-
uous on L? with norm independent of p. Applying the inductive hypothesis
(see (3.6)), we obtain an estimate of the form

1X;La(D)g ullo < 1€y 0 pri=tee,

where £1, 0 < &1 < 1, will be chosen later.
We may summarize what has been done in the

Proposition 3.5. We have

(3.10) Lg(D)¢}ull < € (IPLa (D)l ullo + ILg (D)l ull)
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k+2G+1 _k+d+o
+&C, praTe,
where 0 < £ < 1.

The above proposition allows us to perform the following estimate
k
G101 [1Zg(D)g}, ull
< C(IILg(D)¢p” Pullo + I[P, Lg(D)ey Nullo + 1Lg (D)} ul
s g\P)ep Lo + IILE, Lg(L)ep " luflo + 1ILg (D) ep Ullo

k+2G+1 _k+d+o
+&C, prraTe,

The last term in the second line above is estimated using the induction. We
apply Lemma A.6 with 6 = % We have (for § > 2)

k k k
(3.12) [ILg(D)gy ullo < Kl|Lg-2(D)gy ull 2 < K[ILg-2(D)ey ull

-4 ~k+2G+1 G - k+2g+1 g
< KC#4C# q pq+k+0' 2 < SC# q pq+k+0"

provided C§ > £~'K, where & is a small positive constant to be chosen later.
We point out that, at the end of this process, € will be chosen small depending
on a number of constants given by the problem. As a consequence Cy is
chosen large depending only on the problem’s data.

Let us consider the first term in the right hand side of (3.11).
Let ¢ € G (U) denote a cutoff function with support contained in U,
and such that ¢y = 1 on W, (see Definition 3.2.) Then

k k
IL5(D)@'F Pullo = ||1L5(D)@'" y Pullo.
Then
k k k
IL5(D)e' Yy Pullo < 1l La(D) Pullo+I[Lg(D), o 1w Pullo = N1+Na.
Consider Ni. We have from (3.3)
k
N < 168l I1L5(D)yPullo

= 115l 2m) 3L ()0 Pullo < (27)5 CELCAp*|I(EY ™ & Pullo.

Because of the decaying property of the compactly supported Gevrey func-
tions, by (1.5) we have the estimate (g = §/m)

n q 1 ~ ~
G13) N < 0ECE CapHIE) mCue Ml < T pH
Consider now N,. Applying Lemma A.2 we have
Ny = [[Lg(D), ¢ 1w Pull
I«
< —llop P (x) (9 Lg) (DY Pullo + || Ry (x. D) Pulo.
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Consider the last term in the right hand side above. Since R, o« (x,&) €
S(l) o(R" X R"), its corresponding pseudodifferential operator is bounded in
L%(R™), with a norm bounded by a seminorm of its symbol (see Theorem
18.1.11 of [15] and Theorem A.8.) By (A.8) we obtain that
G.14) IRk (x, DYPullg < Co p"* T |y Pully < Cf* pa,
where C; depends on the problem data only.
Consider then a summand of the form
L ket
Enso; *9 () (9 Lg) (D)W Pullo,

with |8 =¢,1 <€ < [q]. Sincek+{ <k+qg <k+mg<mp<R(p+1)
provided R is large enough, we may apply Definition 3.2, Lemma A.4 and,
arguing as above, we get

ke
gillen ™ (@ L) D) Pull

1
< —C5H p ] Yl Lg-me(D)y Pullo

B!
1 E —
< Eq’;*"“cmn) 2 p" Y| Lyome (E)yPullo
< %Céqu pk+cj—(m—2)€.
We observe that the following formula holds:
t+n—-1
(3.15) #p|1Bl =1t} = ( )
n—1
Thus

[4]

L k i
>, 2 iller @@ LDy Pulle < €7,
=1 |pl=t "

since Y Pu is in Gy’
Summing up, from (3.13), (3.14) and the above inequality, we have the
following bound for the first term on the right hand side of (3.11)

(3.16) IL(D)gp” Pully < eC 2 phtite,

provided Cy, o are large enough.
Let us finally consider the term

(3.17) I[P, Lg (D)o Tullo.

Replacing P with its expression (1.1) we have
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(3.18) I[P, Lg(D)¢"Tullo

N
k k k
< > X3 La(D)oy Tullo+ 11X, La(D)gy Tullo + 1 [g. La(D)ey Tullo

N
= > Aj+Ag+A,.
=1

Using the fact that

(3.19) [X2,Lg(D)e\] = 2X;[X;, La(D)e] = (X, [X;, Li(D) 1]
= A1+ Ajo,
we define A j; = [|Ajullo, i = 1,2.

3.1. The single commutator with X;, A;, j > 1,1in (3.19). We start our
analysis with A j;:

Ap <2 (11X La(D)ef ullo + 1X;Lg (D) (X 4 lulo)
Plugging (1.2) in the above expression we have

(3.20)

An <23 (1L LoD ullo+ 1X,Lg(D)asn D Tul)
h=1
n

<2 (I1X51ajn La(DNDagl ullo + 1XjanLa (D)ol ullo
h=1

k+1 h h h
HIXG[Lg(D). apdelull) = 2 ) (A + A +al).

where with some abuse of language we denoted Dhgo(k) by go(k+1).

To treat the term A§'1)1 we use Lemma A.1.

(321) A% < Z 25 —||X (Daj(x))0f Lg(D)Digy ullo
=118 6’

+[1X;Rg, a,hDhSD “ullo.

Let us start by bounding the last term above:

(3.22) [1X;Rg.a,, Dnppullo < Zna,rnmnD Ria;nDuyullo

r=1
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n

k k
< > lajeloo (IR DrDae ullo + 1| Op(3y, Ry, (6, €D Diself ullo)

r=1
1 g k k
< g™ ™ (D Dagey ullo + 1 Dae} ullo)

where we used Lemma A.1, (A.2), (A.3), and the fact that the coefficients
of the vector fields are uniformly bounded. By (3.2) we conclude that

k k+1 g
(3.23) 1Xj Rgan D ullo < CIHH pathkeder,

Consider now a summand in (3.21).
1 k
511X (D%an () Lg(D) D ullo
1
< 53 (10Ea ) X0 La(D) D1yl

+H1 (X (DS ()3 Lg(D)Dye} ullo) = By + Bo.

Consider B;. We have, by Lemma A.5 with |y| = 1 and || = ¢, and Lemma
A.6,

_ 1
By < K*CLCE p B X (DY Li—tmm—1 (D)@ o,
Arguing as in (3.9), by induction we get (see (3.6), (3.4))
(3 24) B] < Cf+1pf[))'m—1 Ck+2ti—25m+2m—lpk+cj—fm+m—1+a'
. <C ! 4

< C§+2q+1pk+q+0—Cf+lC;zm(f_l)_zﬂ!m_lp_(g_l)(m_l)

k+g+1 2 1)(¢-1)-1 C2 '
+G+ 5 —(2m-1)(¢-1)-
< C# q pk+q+O'C#( m )( ) 1
Cy
k : '
+G+1 _k+g+o 1
< ckrat l
# Cyl’

where we used the inequality

B! B! . (2 ﬁl-)
(3.25) — < < - —=] < 1.
pé’—l !:11 p(,gi_l)+

Analogously, B; is estimated as

n
( +e )'m k
By < K*CLClpt ﬁﬁ—,’lqu_fmm_z(D)soé ull 2.

r=1

By induction we get, as above,
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n

041 € h2G—2Ema2m=3 _k+G—Cmim—2 (B+e)!"

(3.26) By < ClHlpley+2a-2meam=3  keg=tmim WZ;T
£

< Ck+2q+1 k+q+acf+1c—2m(€ D=4 == m=1)- 12 (B +ﬁ€ )"

n m—1
k2541 kadror lal —2m(-1)—4 N0 Br +1 ((B+e;)!
<Gy ptrreer Cy " Z p ( p*!

r=1

i
Cy

¢ n2n(m—1)+1

k+2G+1  k+g+
<C pk g+o

k+2g+1 7l
S C# q pk+q+0' _
Cy

where we used the inequality

Zﬁr"‘l((ﬁ"'er)')m : C 2((,8+er)!)m_l
1

IA

-1

n n m—1 n
< Z 2 1_[ 23 . ﬂi +1 < 2n(m—l)+1 — n2n(m—1)+1’
p p .

r=1 i=1

and we chose Cy > n2"(m=D+1
Plugging (3.23), (3.24), (3.26) into (3.21), we obtain the estimate

¢
n-1\(C k+l g
3.27 A(h) < Ck+2q+1 k+g+o o il CTHHT Grka2+y
G20 P Z n-1 J\Cs P
k+24+1 = (2c2)' K+l
< CFreatl Hk+grogn -1 CIHF+L Gk 2+y

k+2G+1 7t
SEJC# q pk+q+o"

provided Cy is large enough, o > 2 + v. Here we used (3.15).
Let us now turn back to (3.20). The term A( ) is treated analogously to

Ayl’)l and has the estimate

h k+2g+1 G
(3.28) Al < sCy T phrive

Consider now A(.}I’)2 in (3.20). We have, applying Lemma A.6,

I1X;a,5Ls (D)™

ullo < llajnX,;La (D) Vullo
k+1
+[1(Xja,,)La(D) S ullo

< CoK (I1X,(D) 7 Lg-1(D)g Vullo + ILg-2(D) e}l )
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Using (3.9) and arguing by induction we obtain the estimate (see (3.6))

(329) AW = 11XjamLs(D)gy ully < 2CKCy** prae
< 8C§+2q+1pk+q~+0,

provided Cy is large enough.
Plugging (3.27), (3.29), (3.28) into (3.20) we obtain

(3.30) Aji < 6neCy 0 pleare,
3.2. The double commutator, A >, in (3.19). Next we have to estimate

Ajr = 11X, [X;, La(D)e S ullo,

We have

(3.31) Aj < Z I[ajrDy, [ajeDe, Li(D)el 1Tullo-
€,r=1

Now

lajeDe, Ly (D)So(k)] =ajcLg (D)ga(kﬂ) +laje, Lg (D)]go(k)
Hence
lajrDy.ajeDe, Lg (D)<P(k)]]
= [ajDy,ajLi(D)e" + [aje, Ly(D)] ¢ D]
=aj[Dy,ajLg (D)go(k+1)] +[ajr,ajeLg (D)¢(k+1)]Dr
+a; [ Dy, [aje. Lg(D)l@y Del + [ajr, [aje. Ly(D) gy DD,
= alra( 'L; (D)SD(kH) +ajrajcl; (D)(p(k+2) +ajelajr, Lg(D)]¢ (k”)Dr
+a;[Dy. [aje. L D)oy Do+ ajplaje. Ly(D) ]y ™ Dy
+ lajr. [aje. LD @y DeDy = [aje, Ly(D)] gy a') D,

Here, to keep the notation simple, we forgot about the dependence of each
E;onr, ¢, j,q,k.

By Lemma A.6, we may apply the inductive assumption to || E;u||o, for
i=1,2,and get

(3.32)
|Erullo + 1E2ullo < Co (ILg-2(D)ep ull 2 + ILg2(D) e Pl )
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k+2G-1 _k+g+ k+2G+1 _k+G+
< CoCy 7 pht 1t < g0, T phrare

provided Cjy is large enough.
Consider now ||E3u||o, ||Esul|lo. These term are dealt with as we did for
Ayll)l in (3.21), but without the vector field in front. Then by Lemma A.1,

(3.33) [|Esullo < Co Z > —||<Dﬁa,,(x>>aﬂL (D)gy "Dyl
=1 |p|= ' P

k+1
HIRga, 05 Dyulo |

Arguing as for the summands in (3.21), we obtain that
(3.34) IEsully < eCy T+ phrase,

The norm containing Es is bound in a completely analogous way. Consider
further £7. We have

E7 = [aj;, Lg(D)]ep, 2 (I)D

k 1 k
“[aﬂ,L (D) D, [a'). [aje. Lo(D)]1¢y D,

The first term is discussed as E5, while the second as Ej.
We are left with the analysis of E4 and E¢. Let us start with || E4u|o. We
have

~[Dy. [aje, Lg(D)]] r,z > ﬁ,Dﬁan(x)c?ﬁL (D)+Rg.a, (x, D)]
s=1 |B|=s
[4]
= Z; V; B‘Dﬁ“” a;e(x)9fLg(D) + (DrR)g.qy, (x, D).

Hence

(3.35) ||Equllo = llaj [D;, [a]f,L (D)]1e% Dullo

k+1
< llaje[Dy. [aje. Li(D)]1Degy ullo + llajr [Dr. [aje. La(D) 1oy ullo

[4]
DI —||D’3’+“ je(0)0E L (D) Doy ullo
s=1|Bl=s

+ Coll(DrR) gy, (x. DYD g}y ullo



MINIMAL GEVREY REGULARITY 19

[g]
LI —||Dﬁ+€’ je(¥)OELg(D)pp
s=1|Bl=s

+ Coll(DrR) g.a; (%, D)o ullo.

The norms containing a remainder term are bound as in (3.22), (3.23), while
the summands are bound exactly as in the estimate of B, in (3.26).

We are left with the estimate of the norm containing Es. We have, by
Lemma A.1,

[ajr, [aje, Lg(D)]] = aﬂ,z > ﬁ,Dﬁamx)(aﬁLq)(D)mqW(x D)]
s=1|Bl=s

= Z > ﬁ,D Yajc(x)[ajr, (0 Lg)(D)]+ajrRya;, (X, D)=Rya,, (x, D)ajy.
s=1|Bl=s

By Lemma A 4,
1

B b4
prl |(a L;)(D) € A

-8l
Hence

[ajra [ajf’ Lq(D)]]
[4] [g]-s1

2 3 2 X gDl ()@ L) D)

si=l|Bl=s1 s2=1 |y|=s2

+Z Z Cj\lﬁ' SIDfajf(x)Rq—Sl,ajr(x’D)
s1=1|Bl=s1

+ajRya;, (x,D) — Rya;, (x,D)a,

[q] [q]-s1

>y o 'Dﬁa]g(x)Dyajr(x)(6ﬁ+7Lq)(D)

s1= 1|[>’|—51 s2=1 |yl=s2

* Z Z AIB'pSIDfajf(x)Rq—sl,ajr(X, D)
s1=1[Bl=s1

+ajrRya;, (X, D) = Ry a;,(x, D)ajy.
Then the term containing E¢ becomes

[q]-s1 1

[q]
(636 IEulo< ), >\ 3% Y 5

s1=1|Bl=s1 s2=1 |y|=s2
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k
1D aje(x) DY (x) (357 Lg) (D)} DeD,ullo

[4]
Z Z 1 k

+ ¥ C/s\l EPSI ”Dfaﬂ’(x)Rq—sl,ajr (x’ D)‘P‘E) )Dé’Dru”O
s1= =51

k k
+llajr Ry (6, DY DD utllo + Rg.ay (x, D)ajrl) DeDyullg

4
= > Esi.
i=1

Arguing as in (3.22) we have that
(3.37) Egs + Egy < CIHH pathey < g4 vk,
Consider Eg;.

[4] [g]-s1 1
(3.38) Eg = Z Z Z ﬂv_yv
s1=1|Bl=s1 s2=1 |y|=s2
k
N1D%aje(x)DYaj; ()0 Lg)(D) gy DeDyullo

[q] [g]-s1
_ k
<00 D0 D a8 Ly) (D)gy DeDullo
s1=1|Bl=s1 s2=1 |y|=s2
[4] [q]-s1 , W
- -z +
<DL DL Dl Gy DY (9 La) (D) DeDyul 2.
s1=1|Bl=s1 s2=1 |yl=s2
In the last term of (3.38) we bring the derivatives D,/D, to the left. As a

result we have a sum of terms; the principal part of this sum is DgDr¢§,k).

We are going to estimate the principal part since the other terms are bounded
in an analogous way.

_2 k
KDY~ (8" Lg)(D)DeD 0} ull 2

k
< K PP L gpepyt-2-20p ull 2

< KC{I\BI+I7IC§+2(fi—m(|ﬁ|+lyl—2)—2)+1pk+q"—(m—1)(|,3|+|7|-2)+(T'

Here we used Lemma A.5 as well as the inductive hypothesis. Plugging this
into (3.38) we obtain

E¢ < Z Z Z Z C[S\I+SZC21+SZ+2(,B!)/!)’"_1

si=1|B|=s1 s2=1 |y|=s2
. KC;H‘z(q—m(Sl+52—2)—2)+1pk+q—(m—1)(s1+sz—2)+0"
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Applying (3.25) we obtain that
By ( B _¥! )’"‘1
p

p(m—l)(sl+s2—2) -

<1

51—1 psz—]

Hence the sum in the estimate for E¢; becomes, using (3.15),

[q] 1
n—1+s1\(n—1+s>
<
_Z ( n-—1 )( n—1 )

5‘1:1 S2=
$1482 5145242 ~kA2(G—m(s1+52-2)=2)+1 _k+G+o
KC\™C, C, p

_
<

M
— ©

[4]
< Ck+26]+lpk+q+(r Z(/l _ I)C/l 2C—2m(/l 2) < Ck+2q+1 k+q+0’

provided Cy is large enough. Here we used (3.6) and the fact that the
binomials are bounded by 22("~D+s1+s2 - Moreover we changed the variable
so that A = 51 + 5.

Finally consider Eg,.

1
Ee¢ < Z Z C/S\IIB'CWH slﬁml“Rq —5 ajr(x D)SD DfDr””O

[4]
si+l s m—1 ~k+q=s1+1 _k+G—ms+v
< Z G, psi!"C prraTm

s1=1
k 1 +J+ k+2g+1 +J+
< (‘ +q+ pk q+v Z'CO < 8(: +oq+ I k+G 0"

provided Cy is large enough and o > v.
Plugging the above estimates in (3.36), we finally obtain

(3.39) Eg < 4sCy 0! phdre
As a consequence of the estimates of the || E;u||o, (3.31) is bounded by
n 7
(3.40) Ap < D Y Eullg < CpeCy ™ phrare,
tr=1i=1

for a suitable positive constant C;>, independent of k, g.
Thus far we have established the following estimate for Zj.\’: | Ajin (3.18)

N
(3.41) Z | [X]z, Lq(D)(pék)]u”O < CA8C§+q+1pk+‘7+C",

for a suitable positive constant Cy4, independent of k, g.
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3.3. The term containing the X, commutator in (3.18). We are going to
discuss the bound for the term

I1[Xo0, Lg (D) Tullo
in (3.18). We have

1[Xo, Lg(D)ey Nullo < Z ILa0e(x)De, Lg (D) Jullo
=1
n

(Hlaor (01 Lg (D) Vullo + 1 aor (), Lg(D) e Deulo)

=1

N

(llaoe () Lg (D)l ullo + lllaoe (x), Lg(D)1Degefullo
=1

+l[a0r (), La(D) 1oy Vulo) = ZZF&
(=1 i=

Consider first Fy;. We have, by Lemma A.6 and the inductive hypothesis,

(342) Fri = llaoe(x)Lg(D)gp Vullo < CuK | Lg-2(D)gy ™ ull 2

k+142(g-2)+1 - k+2g+1 i
< CaKC#+ +2(G-2)+ pk+1+q 2+0 < 8C#+ g+ pk+q+0'.

Consider Fyp. Arguing as we did for (3.21) we have, applying Lemmas A.1,
AlS,

Fpp = ||[610€(X) Lg (D)]DM Yullo

< Z 2 —||Dﬁaoe(x><aﬁLq)(D>Dfso o + | Ry.ap Deepyy ullo
r=1|Bl=r

4]
— k g+1 g k
<> D G BT KR I Lgrm-2en (D)o ull 1+C pT Do ullo

[4]
< Z Z Ccr;+l,8!m_1KC;\C;(JrZ(q_rm_erm)Hpk+17—(r—1)(m—l)—l+o-
r=1|B|=r
G+ ~k+2  k+G+1+v
+C, C,7p .

The first sum is treated applying (3.25) and arguing as for E¢;; we finally
get

(3.43) Fpy < eCy P phdre,
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The quantity Fy3 is treated exactly as Fyp, getting an estimate of the form
(3.43).
Using (3.42), (3.43) we ﬁnally obtain

(3.44) 1[Xo0, Lg(D)pS Tullo < Cx,eCy 0 pkare,

for a suitable positive constant Cy, independent of k, g, p.

3.4. The term containing the commutator with g in (3.18). Next we
. k k

consider Ay = [|[g. Lg(D)¢y ullo = II[g. L(D)1¢y ullo. By Lemmas

A.1, A4, A.6, we have

[4]
Ag < ; |Z E”D g(x)(ﬁﬁLq)(D)go ullo + 1Ry (x, D)o ullo

lq]
- 1
< Ce B G L) (D) gy ullo + CRT €™ T ullg
=1 |pl=t

[4]
k 1 7t
< ; Z KCACE B Pl Lg-tm-2 (D) ull 1 +CE CEF p9+ .

We now apply the inductive hypothesis and use the inequality 8! < p!#l to
get

lq]
{+ 1 o i
(3.45) Ag < Z KCZ [+1( Fi | )pfmC;HZ(q tm 2)+1pk+q—£’m—2+a'
¢=1
g+k+1 k+g+v
+Cp lluello

t
2C,Ca
c;"

-1 )
< C§+267+1pk+q+a 2" KC Z

k+G+1 _k+g+o
o ¢ P
#

=1
k+24+1 _k+g+o
< MgsC# p ,

provided Cy is large enough.

3.5. End of the proof of Theorem 1.4. By inequalities (3.41), (3.44),
(3.45), we obtain that

(3.46) I[P, Lg(D)o P lullo < MyeCy 0+ phtate

with M| > 0 and suitable. By (3.11), (3.12), (3.16) and (3.46) we finally get
that

(3.47) IILs (D)o ull| < CpH2T phare,
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if Cy is chosen large enough depending only on the problem’s data and
k + g < p. This concludes the induction argument.
Choosing in (3.47) k = 0 and ¢ = p we deduce that

(3.48) ILs(D)gpull 2 < CP* pP*o < ! prite.

In particular when L;(D) = C™P(D)?, C suitable, we have thatu € G™(W),
where W has been defined in (S).
This ends the proof of the theorem.

4. REGULARITY FOR P; 1N (1.7)
In this section we prove
Proposition 4.1. The operator
(4.1) Py =D} +x' VD2 4+ ixk Dy,
is analytic hypoelliptic for every k > 0, g > 2.
Proof. We have that Char(P2) = {x; = &1 = 0, # 0}. Fix a point in
Char(P;), e.g. po = (0,0;0,&,). Fix a large integer p and denote by
¢p = ¢p(x2) an Ehrenpreis cutoff supported near the origin (see Definition

3.2)
We are going to exploit the a priori estimate ([24])

2(g—1
(4.2) ||u||§+||D%u||o+||x1<q 'D2ullo+ xS Daullo < € (JIPaullo + llullo) -

Denote by |||u]|| the left hand side of (4.2). First we prove an estimate of the
form

£
(4.3) 1D\ Vul|| < C2r+t pht

for h+{ < p. Here goEf) = Dggo »- We point out that the exponent 2/ instead
of just 4 is a technical trick which is harmless for the conclusion and plays
a role in the inductive process.

The second step of the proof consists in deducing the estimate

£ 2 £
(4.4) DY ulll < cje ! plal+t,

where |a| + ¢ < p and a; # 0.

Estimate (4.3) holds evidently when /4 = 0, because of the properties of
¢p. We argue by induction on A: assume that (4.3) holds for 2’ < h — 1,
h + ¢ < p; we want to prove it for h, h + £ < p. To this end consider
1D}, ulll and apply (4.2)

14 ¢
@5 D6 ull < C (I1P2DAe ullo + 1D ullo)
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To begin with, consider the last term on the right hand side of the above

inequality. We are going to show that this term, ||D’21<p§f)u llo, can be actually

absorbed on the left hand side of (4.5), modulo a term with an analytic growth
estimate. To this end, denote by y a smooth cutoff function such that y (1) = 1
if |t| > 2 and (1) = 0if |¢| < 1. It turns out that x (p~'D;) € OPS]) . For
the Definition of these classes we refer to [17] and to [2] for an applfcation
in a similar context.

We have then

¢ _ ¢ _ ¢
IDAe ullo < 11(1 = x(p~'D2)) DY ullo + Ly (p~' D2) Dl ullo.
By the Calderén—Vaillancourt theorem (see Appendix) we have that
_ ¢ ¢
11 = x(p~' D) D2 Vullg < ' p P ully < CIHEH M.
Further

_ y _2. 2 _ _2 2 ¢
Ix(p~'D2) D ullo < p~allp7 x (p~' D2)(D) 4 (D)4 Dl Vullg
_2 ¢
< Cop 7lID3y ull2.
Hence we get
4 no (0 -2 h (0 htt+1 . h+t
(4.6) ”Dz‘Pp ullo < Cap q||D2¢pp ””%"‘C] J N

The first norm above can be absorbed on the left hand side of (4.5), while
the second is the desired bound, modulo an adjustment of the constant.
Consider now the term

¢ ¢ ¢
1P2D ey ullo < 1Dy Paullo + 1 [P2, D Tullo.
We need to discuss only the second term since, on supp ¢,, Pou has the
good analytic bounds. Since D; commutes with D;‘go(f) [P>, D;’(pg)] =

p 9
¢ €
[X2, Dol + [Xo, D]

Now
l 2(g-1 ¢
(X3, D¢y = 1"V DAID3, 0]

2(g—
_ xl(q I)Dg (2D2g0§f+1) _ g01&)&2))

_ ay2pnh-1 ((+1) 2 yh-2 ((+2)
=260 e T XDy e
Hence
¢ _1 (641 2 (42
102, Dl ullo < € (IX2DA 0 Vullg + 1X3 D226 P ull)
to which we may apply the inductive hypothesis.
Consider [ Xo, Dé‘(pgf)]. A computation gives
: ¢ . t+1
lx’fD/g[Dz, go§, )] = lxll‘Dé’cpE, * ),
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so that
£ +1 +1
11X2, D2\ Nullo = kDo Dullo = 1 XoDE™ S+ Vo,

to which we may apply the inductive hypothesis.
As a consequence (4.5) becomes
DieYull < G (IDke P
D4y ull < C2 (I1D%e} Paull

£+1 £+2
+IX2DE o Do + ||X§D’; 205wl

Applying the inductive hypothesis gives the desired conclusion, provided
Cy is chosen large enough, independent of 4.

Consider now |||D“<p§f)u|||. We have
¢ ¢ ¢
@ D% ull < € (I1P2D"0 ulo + 11D} ullo)

The L2-error term can be absorbed on the left as above. Consider the norm
||P2D"‘g0§f ullo. As above we have to study the commutator [P, D¢ <p§f)] =

¢ ¢
(X2, D] + [Xo. D0 ].
Let us examine the first term

(X2, D%\'] = 2X,[ X2, D] = [Xa, [X2, D*\1].
We have

2%, Xa, D] = 2Xox T [y, D6 L] + 2X5[x77, D01 D,

= 2Xox0 ' DY\ — 2%, D2 [ DY, x| ¢ D,
min{g—1,a1} @
ZZXQX?_IDQQOSJ-H) 2X, Z (] )(DJ q- 1)Da/ jel(p([)D
j=1
min{g—1,a;} o
= 2x97' X, D, D1 oMV 2 Z (J )(Df 91 X, D DO HDere (0
=1
j-i-JlSal
min{g—1,a1}
+2 Z ( )(D’ q- I)XD DY (]+1)e190(€+1)
j=1 J
J+1<a

where we assumed that @1 > ¢. If @1 < ¢ then for j = @; we cannot bring
a D1 near X, so that D~ (+De1+e2 js replaced by D“ﬁe2 and we use (4.3).
Then
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f+1
201X [Xa, Do\ ullo < C0(||X21) DDl

)4

min{g—1,a;} o

+ Z ( ]1) [”XleDa/—(jH)eHez‘pg)u||0+||X2D1Da—(]+l)e1(pg”)ullo])

=1
j-i-JlSal
< Co( 1D~} * V]
min{g—1,a,} .
£ af|iiprureregy 4 DUt gDy ).
j=1
JH+1<a

We now argue by induction with respect to a;: (4.4) holds when a1 = 0
because of (4.3). Assume that (4.4) holds for @] < @y — 1, |@’| +{ < p and
we want to show that (4.4) holds for a1, || + € < p.

The above expression can then be bounded as

2||X2[X2,DQ (t’)]ullo < Co (C§|a|+€p|a|+€
min{g—1,a1} . . '
+ Z o] [cﬁlwl—%fﬂ plel=i+ 4 2lel-2i+t p|a|—1+5])

j=1
j+]§(¥1

< 8C2|a|+€+1p|a|+f

where € is a small constant to be determined later, provided Cy is large
enough.

The double commutator [X>, [ X>, D“(pé )]] as well as the commutator
with Xj are treated in a similar fashion.

Choosing ¢ = 0 and using the Sobolev immersion theorem we conclude
the proof. O

A. AprpPENDIX: SOME TECHNICAL RESULTS

We gather in this appendix the proofs of some lemmas concerning the
class Aé’ .
Let us start by proving

Lemma A.1. Leta € G (Uy), i.e. |07a(x)| < C|a|+l ™, and let L, € Ap
Then

AD  [Lyal(x,é) = ZZ S DI Ly(€) + Rya(x. 6),

€l|ﬁ|£’
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where R, q(x, &) denotes a symbol in S?’O(R” X R") satisfying estimates of
the form

(A2) 10702 Ry a(x, )] < Ca™ p™*(g)™1A,

where [q] is the integer part of q, |y|+|B| < Cy, where C,, denotes a constant
depending on the ambient space dimension n, Cg > 0 depending only on n,
m, Cq, Cp (see Definition 3.3) and v is a positive constant independent of q,

.
In particular the operator R, ,(x, D) is bounded in L%(R™) by Theorem

A.8 with the estimate
(A.3) IRg.a(x, DYullo < CL*' p™ ¥ lullo,
forany u € S(R").

Proof. From the composition formula for two pseudodifferential operators
B, C with symbols b(x, &), c(x, &) respectively,

o(BoC)x.8) = [ b+ Dclx - 2.8) didz
where d = (2n)™"d({, we obtain

N-1
1
(A4) U([Lq,a])(x,.f) = Z Z aDga(x)aqu(f)
k=1 lal=k =
1
+N Z %// eizgga(l—S)N—laqu(é‘:+sé/)a(x_Z) d‘é’dzds
: 0

la|=N

The above integral has to be understood as an oscillating integral with respect

to .
We choose N = [¢] + 1. Let us denote by R, , the symbol in the last line
above, then we have

O 0L Ry.a(x, 8)

1
= ([q]+]) ) 5 / /O L (1-5) V0P Ly (£+50)0) a(x—2)dL dzds

l|=[q]+1
1 L
= ([¢g]+1) Z ai"“'/‘/o e’zg(l—s)[q]8§+ﬁLq(§+s{)83+aa(x—z)d§dzds.
lel=[q]+1 ~~

Since (1 — A;)Me'* = ¢24(1 +|£]*)™ we may write the above integral as

1
5 / /0 1+ )M A=) Ly (E450) (1-80)M 07 a(x—z) ¢ dzds,



MINIMAL GEVREY REGULARITY 29

which makes the integral a convergent one provided M > % since the
function a has compact support.

In order to show that the above integral defines a symbol in S? o> We split
the domain of integration into two regions: |{| < ¢|é| and |{| > élf |, where
& denotes a positive number less than 1.

Consider the integral over the first region:

1
(A5) Ri(x,8) =—

1
/ / 1+ )M (1= P Ly (£+50) (1AM 0) ™ a(x—2) d dzds.
¢I<elél Jo |

We observe that |& + sZ| < (1 + ¢)|€] and that |£] < €+ sl + || <
|€ + sC| + €|€], so that |€ + 5| ~ |£]. We choose M ~ ”—;1

The integral in (A.5) satisfies the estimates for a symbol in S(l),O (see [15],
Definition 18.1.1):

IR1(x,€)| < Cpp (1 +]ENT1Al < Cp (14 1)),

Let us now prove estimate (A.2) for R;. We point out that |a| + |B] =
[qg]+1+|B8] < g+1+C, < Ro(g+1)if Ry is chosen large enough. Hence
the derivatives on L, are admissible according to Definition 3.3.

1 .
IRy (x, )] < —Cleplcliivalile p""*'ﬁ'<§>q"“"'ﬁ'(|a|+|y|+2[g]+2)zm
.

- / (1+12P)™ a dz

X—supp a

< ﬁcll\+|a|+|ﬁ| (cha)|a/|+|y|+2[§]+2+1p|a|+|,3| <§>q—|a|—|ﬂ| |a,| ’m(|,y|+2[g]+2) ym
al.

- / (1+1cP)™ a i

X—supp a

< C/1\+|a|+|ﬁ|(2nca)|a/|+|y|+2[%]+2+1pIalmplﬂI<é_—>q—|a|—|,8|(cn + Z[g] + 2),m

- / (1+12P)™ ac dz

x—supp a
1 _
< CZ:' paImre(g) |ﬁ|’

where Cg, verifies the same conditions of Cg in the statement of the lemma,
and c is a positive constant independent of p and gq.
Consider the integral over the second region:

1
(A.6) Rp(x,8) = —
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1
/ / L) ™M (1=) D07 P Ly (£+50) (1-A)M 0" a(x~2) d dzds.
¢1zel¢l Jo

We increase the value of M by lél + 1 integrations by parts with respect to z

in order to get a better decay of the integrand. Set M ~ [%] +1+ [@] + 1.

It is easy to see that R; verifies the estimates for the class S‘l) o- Letus show
that R, satisfies (A.2). Arguing as we did above we obtain

8]

1 n 18l
[Ra(x, )] < — eI plobldl oy a2 S e[
.

1
[ s s B aas [
0 |£1z&lé] X—supp a

1 _
< Clq?: pamreL(g) |ﬁ|’

DI

where ¢ is a positive constant independent of p and g.
The estimate (A.3) is a consequence of Theorem 18.1.11 of [15].
This completes the proof of the lemma. O

Lemma A.2. Let ¢, be an Ehrenpreis cutoff as that in (3.5), and let L, € Af;.
Let k denote an integer such that mq + k < mp. Then

[4]
L ke
AT Loy 108) = ) ) ey ™ FFL () + Ry (x:6),
=1 |gl=t """

where R, , i (x, &) denotes a symbol in S?’O(R" X R") satisfying estimates of
the form

(A8) 1070 Ry g (x, €)| < CiHlp*Hma+(g) W,

where [q] is the integer part of q, |y|+|B| < Cy, where C,, denotes a constant
depending on the ambient space dimension n, Cg , > 0 depending only on
n, Cy, Ca, Cy, (see Definition 3.3) and v is a positive constant independent
ofq, p, k.

In particular the operator R, , i (x, D) is bounded in L%(R") with the
estimate

(A9) 1Rg . (e, DYullo < Co* p** 4" [lullo,

forany u € S(R").

Proof. The proof is carried out along the same lines as the proof of Lemma
A.l. In particular we show that R, ,  is a symbol in S(l) o In exactly the same

way, since no explicit control of the derivatives is required.
We give only some indication about how to obtain (A.8).
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Let us denote by R, ., « the symbol in the last line of (A.4). Then we have
OO Ry (%, €)

1 —|a ! i a a
= ([¢g]+1) Z ai | |//0 eZg(l—s)[q](')f+ﬁLq(§+s§)90§,k+| |+|y|)(x—z)d‘§dzds.
la|=[q]+1 "

Since (1 — A,)Me'* = %4 (1 +|£|*)™ we may write the above integral as

1
[ e M Q=) g P L (s 1AM (-2 dgdzas,
: 0
which makes the integral a convergent one provided M > "—“51 since the
function a has compact support.
We split the domain of integration into two regions: |{| < &|&| and
|£| = €]&|, where & denotes a positive number less than 1.
Consider the integral over the first region:

1
(A.10) Ri(x,8) = po]

1
/ / (1P ™M (1-) 1197 Ly (450 (1-A) M o 1D (x—2) ag dzds.
I{I<elé] JO ‘
We observe that £ + s{| ~ |£] as before and we choose M ~ %

Let us now prove estimate (A.8) for R;. We point out that |a| + |8| =
[q]+1+|B] <g+1+C, < Ryo(q+1)if Ry is chosen large enough. Hence
the derivatives on L, are admissible according to Definition 3.3.

Moreover k + |a| + |y| +2[5] +2 < k+[q] + 1+ C, +2[5] +2 <
p+C,+2[5]+2 < R(p +1) if R is large enough. Then, arguing as before,

IR (x,&)| < %Cl+|a|+|ﬂ|C’;+|a|+|7|+2[%]+2+1<§>q—|a'|—|,6|p(k+2|a/|+|ﬂ|+|y|+2[%]+2)
a.

A
: / (L+ g™ ar dz
x—supp a
1 " )
< acﬁ'“”'ﬁ'c';*'“'*'y'*z[ B2 mlal+k (o 1B],Cr20 3142
/(1 + |€|2)—M ac dz < Cllgj-ippk+mq+c<§>—|lg|,
X—supp a

where c is a positive universal constant independent of g, p, Cg, , verifies
the same conditions of Cg , in the statement of the lemma and we used the

estimate
||
b < enb

for b € R*.
a!
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We point out that in deriving the above estimate we used the fact that m > 2.
Furthermore a slightly better estimate could have been obtained by using
Lemma 2.2 of [13] with a compactly supported cutoff function in a Gevrey
class. However this is not particularly useful in our context.

Consider the integral over the second region:

1
(A.1l) Ry(x,¢) = p}

1
/|4|> |§|/0 eizg(1+|§|2)_M(l—s)[q]Gg+ﬁLq(§+s{)(1—Ax)Ma;Y+Q%(Dk)(X_Z)dgdzds‘
2&

We choose M ~ [%] +1+ [Igﬂ] + 1. It is easy to see that R, verifies the
estimates for the class S‘IJ o- Letus show that R; satisfies (A.8). We have that

k+|a|+|y|+2M = k+|a|+|y|+2[§]+2+2[|§i|]+2 < k+|a|+|y|+n+|B|+4 <
k+q+C,+n+4 < Ro(p+1) provided R is large enough. Then

Ro(r.8)| < i‘ clHletia C£+|a|+|y|+2[§]+4+2[@] plHdlalslyl+2ipleails]
.

1
[ sy g s [
0 J|{|>&l¢] Xx—suppa

S Cﬁ:,iopk+mq+cl <§>—|ﬁ|’

where ¢ is a positive universal constant independent of g, p, Ckg, . verifies
the same conditions of C , in the statement of the lemma.

Finally (A.9) is proved as (A.3) in the preceding lemma.

This completes the proof of the lemma. O

Since in the proof of Theorem 1.4 we use iteratively the a priori estimate
(2.1) which is applied to smooth functions with compact support, we need
a slight modification of the previous lemma allowing for estimates of norms
of non compactly supported functions.

Lemma A.3. Let ¢, be an Ehrenpreis cutoff as that in (3.5), and let L, € Alq).
Let k denote an integer such that mq + k < mp. Then

[ql+1
e
A12) o (Lygy )6 = D) D) zey ™ W Ly(@) + Rygu(x.6),
=0 =t "

where Ry , i (x, &) denotes a symbol in SIB(R” X R") satisfying estimates of
the form

A13) 179 Rypu(x )] < CRp" )™
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where [ q] is the integer part of q, |y|+|B| < Cn, where C,, denotes a constant
depending on the ambient space dimension n, Cg , > 0 depending only on
n, C4, Ca, C, (see Definition 3.3) and v is a positive constant independent

of q, p, k.
In particular the operator R o i (x, D) is bounded from L*(R") to H'(R")
with the estimate

(A.14) IR ok (x, DYully < C§H p" ™[]l
for any u € §(R").

Proof. We point out that (A.12), (A.13) are proved in the same way as (A.7),
(A.8) of the preceding lemma. Thus we have to prove (A.14).
To this end we note that

n
1Rg. i (x, Dy < C| (IR (x, DYullo + Y DRy i (x, D)ullo |.

j=1
As in the preceding lemma, using Theorem A.8, we see that
(A.15) IR,k (x, D)ullo < Cog' p**" |lullo.
Let us consider then |[D;R, o« (x, D)ullp, 1 < j < n. Now the symbol of
DRy ,4(x,D) is

1
é:qu,ép,k(x’ ‘f) + ;aijq,%k(x» f)

In view of (A.13) we have that

020 (&R .04 (,€) + 504, Ry (5, £))] < CF1 ko gy,
where |y| + |B8| < C,, — 1. By Theorem A.8 we conclude that
(A.16) 1D Ry .1 (x, D)ullo < C5F' p* 4™ |lullo.
The estimates (A.15), (A.16) imply the lemma. O

LemmaA4. Let L, € AZ and 8 a multiindex such that |B| < q. Then

1
A.17 — dPL, e .
(A.17) C|Aﬁ|p|,3| eha © Ny yp)

where Cy is the constant in (3.3).
Proof. Consider 6§+ﬂLq, with |a| < Ro(q — |B] +1). By (3.3) we have
|8§+ﬁLq| < C/|§l|+|ﬂ|+1p|a|+|ﬁ|<§>q—|a|—|ﬁ|,

since | + B8] < Ro(qg — |8l +1) +qg < Ro(g +1). O
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In particular the above lemma gives that 6? L,(¢) = Cllfl p|ﬁ|Lq_|ﬁ|(§).
We point out that this is a small abuse of notation since the left hand side
of the latter equation depends on S and the right hand side depends on |g].
However both sides verify the same symbol estimates depending only on |S|
and this is all that we need in the proofs.

We need also a slight extension of the above lemma.

Lemma A.5. Let L, € A} and B, y multiindices, 0 < 6§ < 1, with |y| < 2,
mo = max{|B| — |y|,0} > 0and |y| < |B| < q. Then there exists a positive
constant, K, dependent on Cy, Ry and independent of p, q, B, such that, for
every Ly, € AL,

(A.18) <§>—5§75§3Lq e A’

—|Bl+lyl-¢’
chﬂplﬁl a-IPHly

where Cy is the constant in (3.3).
Proof. Consider 6 (<g>-5§m§Lq), with || < Ro(q — 8]+ |y| = 6 + 1).

Let us show first that |a| + |B] < Ro(g + 1), so that we are able to estimate
the |a| + |B] derivatives of L. In fact

| + 18] < Ro(q = Bl + [y| =6 + 1) + B
= Ro(g+1) = Ro(IB| = |y|+6) + 1B
=Ro(g+1) = (Ro = D(IBl = ly[+6) + (ly| = 9)
< Ro(g+1)—(Ry—1)mp+2 -6 < Ro(q + 1),

provided Ry is large enough.

We have
|
@ —6 &y aB a: M1 g\=0 || QM2 &y || QH3+B
o (€L < 3, sl O Nl E oL
Zjuj=a
< ¥ a! YL bl bl ey=o-lal Bl gya-lBl-lisl gy
g A il (y = o)A 0
jHj=a
H2=Y
< > ( Y )“—’Crlﬁnmﬂcémn pIBIHis| gya+lyI-|Bi-lal-o.
- - — |
5 Gl \Ha) (@ = iy = )
H2<Y
Now
a!

Hi11tH21 MHintU2 + + +
——— < a] coeghtnthe < |a|l/x1| k2l < (2R0)|’““| Iﬂzlplml Il
(@ —p1 — p2)!
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since || < Ro(g +1) < Ro(p +1) < 2Rygp. We also have

(7) < nM( Y] ) < 2n?.
M2 |2

Hence
of (&0 ob L)

< Z (y)(2R0)|#1|+|#2|C[—\|M1|—|/12|C(|)ﬂ1|+1C11\+|a|+|ﬂ|p|,3|+|a|<§>Q+|7|—|ﬁ|—|a’|—5

Zj Hj=a H2
M2y
< 2]’12 Z Z (2RO)|/11|+|/12|C1§|ﬂ1|—|ﬂ2|c(|)#1|+1
M1 pp<a—uj
H2 =y
. C/1\+|d|+|ﬁ|p|ﬁ|+|a|<§>Q+|V|—|ﬂ|—|w|—5
< 2n2C0 i (l’l -1 +51) (ZR()CO)K1 Z (I’l -1 +52) (&)[2
- i n-—1 Ca e n-1 Ca
. C/l\+|“|+|ﬂ|p|,3|+|a|<§:>Q+|7|—|B|—|C¥|—5
|| 2 O
) 4RoCo 4Ry
< 1n2C0 Z( ) Z (_)
2o\ Cn ) £\ Ch

. CLHaHBLBllal (eya+ly-lpi-lol-o
< KCIHOMBL Bl gyarly-lpl-lol=s.

provided Ry is chosen large enough. This completes the proof of the lemma.
O

Lemma A.6. Let 0y denote a fixed positive number and 0 € R*, 0 < 6 <
0o < qg. Then there exists a positive constant, K, independent of p, q, such
that, for every Ly € AL,

1
(A.19) E(g)“’Lq €A,

Proof. Let a be a multiindex such that || < Ry(¢ — 6 + 1). Then

oz (@°L)| < 35 (5 )obiernor 1,

<a

B
<y (“)Cll\ﬂal—lﬁlc(l)ﬂlﬂ plel-181 gy gya-lal-o
Ba ﬁ



36 ANTONIO BOVE AND MARCO MUGHETTI
1+|a|- 1 Jal- lal-
< Z |a,|IB|CA+|a| |:3|C(|)ﬂ|+ plal=IBlgya-lal=6,
Ba
since |a| — |B] < Ro(q +1). Here we used the estimate |0§(§)‘9| <

C|Oﬁ +1 BV From the above inequality we get

[ 8
s (<§> L )‘ < ¢ Ml plal(gya-tal= eCOﬁZ;(CO) (Ro(l;;|1))

0 CoC 2RyCoC \*
< ¢l lal gya-lal-0 C0C1 5 [2RoCoCh )
SCTPTE K ZM Ca

where we applied (3.15) as #{B | |B| = {} < Cf“ for a suitable constant C.
Choosing K large enough we obtain the assertion. O

We also recall the L? continuity theorem for pseudodifferential operators.

Definition A.7. Foranym € R, p,6 e Rwith0 <6 < p < 1,6 < 1, we
denote by S}’;”(S(R" X R") the set of all the functions p(x, &) € C®(R*") such

that for every multi-index a, B there exits a positive constant C, g for which

10808 p(x,€)] < Cop(&)"P17HoIA,

where (€) = (1+1¢])2.

We denote by OPSZq’ s the class of the corresponding pseudodifferential
operators P = p(x, D).

We denote by SZ*, s(R") the class of symbols depending on & only.

It is trivial to see that the symbol class Sm s €quipped with the semi-norms

ple" = max sup{]agalp(x,&)|(€) ") e
la+B|<t (x,€)
is a Fréchet space.

The Calderén-Vaillancourt theorem shows the L>-continuity properties of
the pseudodifferential operators in the above classes (see [5] or, for a more
general setting, [17] Chap. 7, Th.1.6). We state below a formulation of such
a theorem for pseudodifferential operators of order zero.

Theorem A.8 (Calderén-Vaillancourt). Let P = p(x,D) € OPSg s With

0<06<p <106 < 1. Then there exist a positive integer € and a positive
constant M (depending only on n) such that

(A.20) || Pullp < M|p|§0)||u||0, for every u € L*(R").
If the symbol of P is a function of & only, then { = n + 2.
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