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ABSTRACT 

Numerous lines of research indicate that our social brain involves a network of cortical and subcortical brain 

regions that are responsible for sensing and controlling body movements. However, it remains unclear whether 

movement disorders have a systematic impact on social cognition. To address this question, we conducted a 

systematic review examining the influence of hyperkinetic movement disorders (including Huntington disease, 

Tourette syndrome, dystonia, and essential tremor) on social cognition. Following the PRISMA guidelines and 

registering the protocol in the PROSPERO database (CRD42022327459), we analyzed 50 published studies 

focusing on theory of mind (ToM), social perception, and empathy. The results from these studies provide 

evidence of impairments in ToM and social perception in all hyperkinetic movement disorders, particularly 

during the recognition of negative emotions. Additionally, individuals with Huntington’s Disease and Tourette 

syndrome exhibit empathy disorders. These findings support the functional role of subcortical structures (such 

as the basal ganglia and cerebellum), which are primarily responsible for movement disorders, in deficits related 

to social cognition. 
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1. Introduction 

Social cognition refers to a complex set of mental abilities that enable us to process and respond to social 

stimuli. These abilities are crucial for accurately interpreting social contexts and effectively interacting with 

others (Beaudoin & Beauchamp, 2020; Decety & Cacioppo, 2011). When social cognition is impaired, it can 

have a negative impact on our understanding of others and our ability to interact with them, leading to a 

diminished quality of life (Hasson-Ohayon et al., 2017). In experimental and clinical settings, researchers have 

primarily focused on three main dimensions of social cognition: social perception, theory of mind (ToM), and 

empathy (Henry et al., 2016). These dimensions are conceptually, behaviorally, and neurally distinguishable 

from each other (Preckel et al., 2018). 
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At its most basic level, social perception involves how we perceive and interpret social cues. These cues include 

biological movements (Giese & Poggio, 2003), emotions expressed through facial and bodily expressions (De 

Gelder et al., 2010; Todorov et al., 2008), and emotional prosody (Mitchell et al., 2003). The posterior superior 

temporal sulcus (pSTS) is one of the areas most consistently activated in response to biological movements 

(Allison et al., 2000; Jastorff et al., 2012; Urgesi et al., 2014) and emotional expressions (Deen et al., 2015; 

Haxby et al., 2000; Paracampo et al., 2018b). Other areas that respond to biological movements include inferior 

frontal, premotor, somatosensory, and posterior parietal regions that are also active during action execution 

(Paracampo et al., 2018a; Pitcher et al., 2008; Sliwinska & Pitcher, 2018; Urgesi et al., 2014; Valchev et al., 

2017). These sensorimotor regions contribute to linking observed movements and expressions with their 

corresponding sensorimotor representations (Avenanti et al., 2013; Keysers et al., 2010; Rizzolatti & Sinigaglia, 

2016), providing support to embodied-grounded proposals that cognition, and social perception in particular, is 

rooted in sensorimotor experiences and body-environment interactions (Barsalou, 2008; Borghi et al., 2013; 

Gallese & Sinigaglia, 2011; Niedenthal et al., 2010; Pezzulo et al., 2011; Shapiro, 2011). Social perception also 

relies on visual areas involved in processing morphological aspects of facial and body stimuli, including the 

fusiform facial area (FFA) and occipital face area (OFA) (Kanwisher & Yovel, 2006; Pitcher et al., 2011) and the 

extrastriate body area (EBA) and fusiform body area (FBA) (Downing & Peelen, 2016; Peelen & Downing, 

2007). Additionally, social perception involves the amygdala which is part of a cortico-subcortical network 

responsible for identifying the salience and emotional value of social stimuli (Bagnis et al., 2020; Costafreda et 

al., 2008; Seeley, 2019; Tamietto & de Gelder, 2010). 

Theory of mind (ToM) allows us to attribute mental states to ourselves and others. This ability enables us to 

make inferences and adjust our behavior in social environments (Carrington & Bailey, 2009; Gallagher & Frith, 

2003). The medial prefrontal cortex (MPFC) plays a role in integrating social information with stored knowledge 

and norms, allowing us to infer others’ mental states, including stable states such as personality traits (Amodio 

& Frith, 2006; Heleven & Van Overwalle, 2018). On the other hand, the temporoparietal junction (TPJ) is 

involved in processing temporary inner states such as belief, goals, and intentions of other people (Krall et al., 

2015; Van Overwalle, 2009). 

Empathy encompasses two main components: cognitive empathy, which refers to the ability to assume the point 

of view of others (perspective-taking) and understand their feelings, and affective empathy, which involves 

perceiving and experiencing at an emotional level what another person feels (Cuff et al., 2016; Zaki & Ochsner, 

2012) – although some scholars tend to limit the concept of empathy to its affective component (e.g., Preckel et 

al., 2018). The brain networks involved in cognitive empathy overlap with those associated with ToM, including 

MPFC and TPJ. On the other hand, affective empathy primarily involves the anterior middle cingulate cortex 

(aMCC) and anterior insula (Fan et al., 2011; Singer et al., 2004; Zaki & Ochsner, 2012) which reflect individual 

emotional response (Corradi-Dell’acqua et al., 2016; Fan et al., 2011; Zaki & Ochsner, 2012). Sensorimotor 

areas also participate in empathic responses, such as when observing others in pain, which activates motor and 

somatosensory regions (Avenanti et al., 2005; Bufalari et al., 2007; Keysers et al., 2010) relevant for 

understanding others’ bodily states (Adolphs et al., 2000; Pitcher et al., 2008). The collective activity of these 

brain regions contributes to eliciting compassions, which is a complementary social emotion associated with 

reward-related brain networks, including the basal ganglia (ventral striatum and nucleus accumbens), 

orbitofrontal cortex (OFC) and subgenual anterior cingulate (sgACC) (Preckel et al., 2018), and regulating 

prosocial behavior (e.g., Gallo et al., 2018; Zaki & Ochsner, 2012). 

Given the critical involvement of brain networks related to sensing and controlling the body in various aspects of 

social cognition (Avenanti et al., 2013; Barsalou, 2008; Gallese & Sinigaglia, 2011; Keysers et al., 2010; 

Niedenthal et al., 2010; Rizzolatti & Sinigaglia, 2016; Shapiro, 2011), it is relevant to investigate the extent to 

which pathological conditions affecting sensorimotor control of body movement, specifically movement 

disorders, are associated with deficits of social cognition. This is particularly interesting since many of the neural 

structures affected in individuals with movement disorders overlap with the brain regions involved in social 

cognition or are directly connected with them. Therefore, it is worth examining these cognitive processes in 

people with movement disorders. Recent meta-analyses on Parkinson’s disease (PD) (Coundouris et al., 2019, 

2020) – a complex hypokinetic disorder characterized by slowness and paucity of movement (Abdo et al., 2010) 

– have reported deficits in social perception, involving the recognition of emotions from faces and prosody, as 

well as in the cognitive dimensions of ToM and empathy, despite an intact affective empathy. On the other 

hand, less attention has been devoted to synthesizing knowledge about hyperkinetic movement disorders, 

which comprise a diverse group of diseases characterized by excessive and involuntary movements (Abdo et 



al., 2010). Therefore, our objective is to synthesize the current literature on social cognition processes in 

hyperkinetic movement disorders to address this knowledge gap. 

We conducted a systematic review of social cognition studies in several hyperkinetic movement disorders, 

including Huntington’s disease (HD), Tourette syndrome (TS), dystonia, and essential tremor (ET). These 

disorders are characterized by excessive and abnormal involuntary movements and are commonly associated 

with a dysfunction of the basal ganglia and associated cortical-subcortical-circuits; this dysfunction may extend 

to various brain regions, including the prefrontal cortex and the cerebellum (Albin et al., 1989; Den Dunnen, 

2013; Jankovic, 2009). 

We focused on studies investigating social perception, ToM, and empathy in hyperkinetic disorders. Social 

cognition impairments have been observed in these disorders, and understanding the nature and extent of 

these deficits is crucial for better comprehending their impact on social functioning and developing effective 

interventions. 

This review aims to achieve the following objectives: 

Present an overview of the state of the art of social cognition in hyperkinetic movement disorders, highlighting 

any points of convergence or divergences among the examined diseases. 

Build on neuroimaging and clinical evidence to provide new insights into the brain networks and connectivity 

patterns underlying social cognition. In this regard, particular attention will be given to subcortical structures (i.e., 

basal ganglia, cerebellum), which are primarily responsible for hyperkinetic movement disorders. 

Evaluate the consistency of social cognition deficits across studies to address whether the assessment of social 

cognition can serve as a tool for the evaluation, treatment, and prognosis of patients affected by hyperkinetic 

movement disorders. 

 

2. Methods 

To conduct the systematic literature review, we followed the guidelines of the PRISMA Statement (Page et al., 

2021). The research protocol was registered in PROSPERO, the International prospective register of systematic 

reviews (CRD42022327459). The review process involved the following steps, based on the PICO framework: 

Problem/Patient/Population (P): We analyze the presence of alterations in social cognition in patients with 

hyperkinetic movement disorders. 

Intervention (I): we assessed different dimensions of social cognition, with or without the addition of 

neuroimaging techniques, to find correlations with brain structure and functioning. 

Comparison/Control (C): We compared the results with control groups of healthy subjects. 

Outcome (O): We investigated the extent and nature of social cognition alterations or deficits in patients with 

hyperkinetic movement disorders, along with any structural and/or functional neural correlates at the level of 

cortical or subcortical areas and/or connectivity between them. 

To identify relevant articles, we consulted the semeiotic description of movement disorders from “Principles and 

practice of movement disorders” (Fahn, 2011; Fahn et al., 2011) and the ICD-11 classification (World Health 

Organization, 2019). These sources were cross-referenced with the three dimensions of social cognition 

mentioned above. 

The search process involved entering the following string as a search term in the Scopus, PubMed, and Web of 

Science databases: ((“abdominal dyskinesia” OR “akathisia” OR “athetosis” OR “ballism” OR “chorea” OR 

“dystonia” OR “hemifacial spasm” OR “hyperekplexia” OR “hypnogenic dyskinesia” OR “jumping disorder” OR 

“jumpy stump” OR “moving toes” OR “moving fingers” OR “myoclonus” OR “myokymia” OR “synkinesis” OR 

“myorhythmia” OR “periodic movements in sleep” OR “REM sleep behavior disorder” OR “restless legs” OR 

“stereotypies “OR “tics” OR “tremor”) AND (“social cognition” OR “theory of mind” OR “social perception” OR 

empathy OR “emotion* recognition”)). The string produced a total of 1137 results. To refine the search, 

duplicates were eliminated, and a first selection was made based on abstracts. The final selection was made 

after consulting the full texts, considering the following inclusion and exclusion criteria. 



Inclusion criteria: (1) the research articles had to be original and published in English in peer-reviewed journals; 

(2) the studies needed to be conducted on patients with hyperkinetic movement disorders, based on the list of 

symptoms in “Principles and practice of movement disorders” (Fahn, 2011; Fahn et al., 2011) and ICD-11 

(World Health Organization, 2019). The studies should have involved tasks or assessment measures related to 

the dimensions of social cognition considered; (3) The studies were required to provide a detailed description of 

tasks and assessment measures related to social cognition. 

Exclusion criteria: (1) review articles were excluded; (2) case studies were not considered; (3) articles that did 

not pertain to the topic of interest, such as those lacking social cognition measures, movement disorders, or 

articles on genetics or pharmacology, were excluded; (4) Editorials or commentary were not included; (5) 

articles not written in English were excluded; (6) Studies without a healthy participants control group were not 

considered; (7) articles that were already included in a previous meta-analysis on HD (Bora et al., 2016), which 

highlighted deficits in social perception and ToM in individuals with HD, were excluded. Indeed, our aim was to 

explore the most recent or excluded developments in social cognition in this disorder. 

After applying these criteria, a total of 50 articles were included. The literature search encompassed papers 

published until NaN Invalid Date . The PRISMA flow diagram (Figure 1) and the table of excluded articles and 

their reasons (Table 1) are presented below. The selected articles were categorized into paragraphs focusing 

on different pathological conditions, namely HD, TS, dystonia, and ET. 

 

Figure 1. PRISMA flow diagram illustrating the selection process. 

 

 

 

 



 

 

 

 

 

2.1. Risk of bias assessment 

We assessed the risk of bias using “The Scottish Intercollegiate Guidelines Network Methodology checklist: 

case-control study” (Scottish Intercollegiate Guidelines Network, 2012) since we reviewed non-randomized 

case-control studies. This tool consists of sections that evaluate the methodological quality of the studies based 

on sample selection methods, the validity and reliability of the measures used, control of confounding variables, 

and the statistical analysis methodology, which help form an overall judgment (Figure 2). The assessment 

primarily focused on controlling comorbidity with psychiatric and neurological diseases because their presence 

can influence the outcome of social cognition tasks (Rokita et al., 2018; Weightman et al., 2014). Most studies 

on movement disorders had a low risk of bias, while the highest risk was found in studies focusing on individuals 

with HD (28%). For the complete record, refer to the supplementary materials. 

 

 

 

Table 1 Table 1. Social cognition impairments in hyperkinetic movement disorders. 
 
 

Huntington 
Disease 

Premanifest: individuals tend 
to perceive social stimuli as 

less salient.Manifest: 
difficulties in recognizing 

emotions, particularly 
negative ones.Manifest: 
difficulties in recognizing 

emotions, particularly 
negative ones. 

Manifest: difficulties in 
recognizing emotions, 

particularly negative ones. 

Premanifest: ToM (cognitive and 
affective) worsens as motor 

symptoms progress. 
Manifest: Impairments in affective 
ToM (emotional attribution) and 
cognitive ToM (understanding 
others’ mental states). Altered 

sarcasm understanding, 
schadenfreude, and third-party 

punishment. 

Premanifest: Lower scores on 
cognitive (perspective-taking) 

and affective empathy (empathic 
distress) compared to healthy 

controls.Manifest: Impairments in 
both cognitive and affective 

empathy.Manifest: Impairments 
in both cognitive and affective 

empathy. 
Manifest: Impairments in both 

cognitive and affective empathy. 

Tourette 
Syndrome 

Deficits in recognizing facial 
expressions of anger, 
surprise, and sadness. 

Difficulty in identifying anger 
prosody. 

Difficulties in cognitive ToM 
(detecting and judging faux pas, 
unconventional reactions to social 
stimuli, deficits in indirect sarcasm 

comprehension, hyper-
mentalization). 

Deficits in affective ToM (reasoning 

about envy and gloating 
expressions). 

TS patients may not necessarily 
perform worse on ToM tasks but 
may have task-dependent gray 

matter alterations. 

Reduced scores on cognitive 
empathy (perspective-taking). 
Increased scores on personal 

distress 

Dystonia 

Only craniocervical dystonia: 
difficulties in recognizing the 
facial expression of disgust, 

fear, and anger from prosody. 

Only craniocervical dystonia: 
impairments in cognitive ToM 

(recognizing others’ intentions) and 
affective ToM (attributing emotions 

to others in a social context). 

No significant differences with 
controls. 

Essential 
Tremor 

Negative correlation between 
tremor severity and 

recognition of facial emotions, 
particularly fear, and joy. 

Deficits in cognitive ToM (mental 
state attribution) but not in 
affective ToM (emotional 

attribution). 

Unknown 

 Social Perception ToM Empathy 



Figure 2. Risk of bias summary. 

 

 

3. Results 

3.1. Huntington disease 

Huntington Disease is an autosomal dominant neurodegenerative disorder caused by a mutation in the IT15 

gene on chromosome 4. This mutation leads to abnormal expansion of the CAG repeat in the region coding for 

the protein huntingtin (HTT). This mutant HTT aggregates and accumulates within neurons, resulting in 

progressive neuronal dysfunction and death (Beal et al., 1986; Jimenez-Sanchez et al., 2017; Tabrizi et al., 

2020; Walker, 2007). The progression of HD can be divided into three stages: premanifest, prodromal and 

manifest. The premanifest stage is characterized by the absence of clear symptoms. During this stage, 

individuals may not exhibit any noticeable signs of the disease, but genetic testing can identify the expansion of 

the CAG repeat. In the prodromal state, the first subtle symptoms of HD start to emerge. These symptoms can 

vary among individuals and may include behavioral and motor changes. The manifest stage is characterized by 

the progressive development of motor and cognitive symptoms until death, which usually occurs around 15–

20 years after the appearance of the first symptoms (Vonsattel & DiFiglia, 1998). The classic motor symptom of 

HD is chorea, which involves involuntary, rapid, and arrhythmic movements. Other motor symptoms may 

accompany chorea, including tics. In the advanced stages or early-onset forms, bradykinesia and akinesia may 

become more prominent. Cognitive impairment is also a significant aspect of HD, with executive functions 

deficits being a common manifestation. These deficits can affect decision-making, planning, sequencing, 

attention and other cognitive abilities. Additionally, individuals with HD may experience psychiatric problems, 

including depression and apathy, which worsen as the disease progresses (for a review, see Bates et al., 2015). 

Pathologically, HD is characterized by neurodegeneration of the basal ganglia, which is particularly severe in 

the striatum – a key structure for movement control and reward processing (Beal et al., 1986; Jimenez-Sanchez 

et al., 2017; Tabrizi et al., 2020). Prominent atrophy occurs mainly in its dorsal sensorimotor components 

(caudate nuclei and putamen) and results from the loss of GABAergic spiny projection neurons, also known as 

medium spiny neurons. Atrophy also occurs in the neocortex, the main input region of the striatum, and it is 

most pronounced in motor and premotor areas, while in advanced disease stages other brain regions become 

affected, including other basal ganglia nuclei and the cerebellum (Waldvogel et al., 2015). Neurotransmitter 

systems in the brain are also affected in HD, with a relevant decrease of GABA levels in striatum and 

dysregulation of other neurotransmitters, including dopamine and glutamate, has also been implicated in the 

pathophysiology of HD. Finally, HD is associated with mitochondrial dysfunction, oxidative stress, and impaired 

energy metabolism in affected neurons. These cellular abnormalities contribute to the progressive degeneration 

and death of neurons in the brain (Beal et al., 1986; Jimenez-Sanchez et al., 2017; Tabrizi et al., 2020; Walker, 

2007). 

Social cognition abnormalities in HD primarily manifest in the domain of social perception. Individuals with HD 

consistently experience difficulties in recognizing emotions from others’ facial expressions, particularly negative 

emotions (Ille et al., 2011; Kordsachia et al., 2018a; Labuschagne et al., 2018; Larsen et al., 2016; Philpott et 

al., 2016; Sprengelmeyer et al., 2016; Trinkler et al., 2017; Unti et al., 2018; Vicario et al., 2017; Yitzhak et al., 

2020). These difficulties have been extensively discussed in recent studies and were highlighted in a meta-

analysis by Bora and colleagues (Bora et al., 2016). However, additional research suggest that these difficulties 

can also extend to the recognition of facial expressions of calmness (Hünefeldt et al., 2020) and happiness 

(Hünefeldt et al., 2020; Osborne-Crowley et al., 2019), as well as the recognition of emotions conveyed by body 



expressions (Zarotti et al., 2019). Moreover, individuals with HD, even in the premanifest or early stages of the 

disease, tend to perceive a lower salience of social stimuli. When looking at a face, they exhibit fewer fixations 

and less time scanning the eye region, which is crucial for recognizing various expressions (Kordsachia et al., 

2018b). 

Emotion recognition impairments are further supported by a recent study using regression-based normative 

data, which showed that 80% of people with HD perform worse in emotion recognition than healthy participants 

(Vogel et al., 2022). It should be noted that while individuals with HD demonstrate reduced ability to recognize 

emotional faces and provide lower intensity ratings of facial expressions compared to controls, they tend to give 

higher intensity ratings for affective scenes across different emotions. This suggests various impairments in 

emotion recognition and emotion experience in HD (Ille et al., 2011). Notably, individuals with HD also exhibit 

reduced spontaneous facial mimicry when faced with others’ emotions and demonstrate reduced voluntary 

imitation (Kordsachia et al., 2018a; Trinkler et al., 2017). The impairment in emotion recognition is correlated 

with gray matter volume in the caudate as well as in areas previously associated with shared action 

representations, such as the somatosensory, posterior parietal, pSTS, and subcentral sulcus regions, as shown 

by voxel-based morphometry (VBM) (Trinkler et al., 2017). On the other hand, studies have reported no 

correlation between emotion recognition deficits and alexithymia in individuals with HD (Trinkler et al., 2017). 

Alexithymia refers to a deficit in the cognitive processing of emotions, causing difficulties in identifying and 

verbally describing experienced feelings and emotions by oneself and others (Barchetta et al., 2021; Craparo et 

al., 2016; La Rosa et al., 2022; Martino et al., 2021; Taylor & Bagby, 2013). This suggests that the emotion 

deficit in HD is unrelated to alexithymia but might be tied to the “motoric level” of emotion expression (Trinkler et 

al., 2017). 

Emotion recognition deficits in HD are generally observed across all negative emotions, but particularly 

compromised in the recognition of fear, disgust, and anger (Bora et al., 2016). These deficits have been 

reported in both pre-manifest and manifest HD individuals (Bora et al., 2016). Early studies have also shown 

that emotional experience itself can be affected, as indicated by research on disgust (e.g., Hayes et al., 2007; 

Mitchell et al., 2005). Interestingly, individuals with HD also struggle with recognizing trustworthiness and 

dominance from observed facial expressions (Sprengelmeyer et al., 2016). These deficits have been associated 

with reduced fractional anisotropy, primarily in the MPFC, middle frontal gyrus, anterior corpus callosum, left 

somatosensory cortex, bilateral insula, amygdala, cerebellum, and pons (Sprengelmeyer et al., 2016). 

Furthermore, intranasal oxytocin administration has shown promise in improving social perception of disgust in 

people with HD, bringing it to levels similar to those of control participants. This improvement is associated with 

increased activity in the putamen and middle frontal gyrus (Labuschagne et al., 2018). Low levels of oxytocin in 

individuals with HD have also been found to correlate with poor performance in social perception and ToM tasks 

(Unti et al., 2018). These findings suggest that oxytocin administration may have a therapeutic potential for 

improving social cognition in HD. 

In their meta-analysis, Bora et al. (2016) reported consistent difficulties in ToM tasks, such as the Reading the 

Mind in the Eyes Test (RMET) and faux paus recognition, in people with HD. They also found a trend for 

impairment in individuals with premanifest HD. Subsequent studies have further supported these findings, 

showing deficits in cognitive and affective ToM in individuals with HD (Bayliss et al., 2019; Belardinelli et al., 

2019; Brüne et al., 2021; Eddy et al., 2018; Unti et al., 2018). These deficits are not accounted for by impaired 

global cognitive functioning, at least in HD patients in mild to moderate disease stages (Lagravinese et al., 

2017). 

An fMRI investigation conducted by Eddy and colleagues showed reduced RMET performance in people with 

HD, associated with reduced activation of dorsolateral prefrontal-parietal areas involved in executive functions 

(Eddy et al., 2018). This study also reported reduced activations in the left insula and supramarginal gyrus in 

manifest HD and increased activations in MPFC/anteriore cingulate cortex (ACC) in premanifest HD (Eddy et 

al., 2018). People with premanifest HD have been reported to show changes in eye movements, including 

alterations in the number of fixations, average fixation time, and percentage of time spent fixating images during 

performance of the RMET (Olivetti Belardinelli et al., 2021). Additionally, individuals with premanifest HD have 

been reported to experience a decline in social perception and ToM abilities, alongside the progression in motor 

symptom severity (Bayliss et al., 2019; Belardinelli et al., 2019; Eddy et al., 2018). It is important to note, 

however, that certain studies have also found preserved emotional attribution skills in individuals with 

premanifest HD (Zarotti et al., 2018). 



Other investigations of ToM abilities and social reasoning in individuals with HD have reported impairments in 

understanding sarcasm. One study found that only “simple sarcasm”, where the described situations imply the 

opposite meaning to what is being said (Philpott et al., 2016), is affected (Larsen et al., 2016), while another 

also identifies abnormalities in recognizing “paradoxical sarcasm”, which refers to sentences where the 

exchange of words is meaningless unless one understands the sarcasm involved (Philpott et al., 2016). The 

larger sample size in the first study suggests that individuals with HD have greater difficulty identifying simple 

sarcasm, which may be attributed to challenges in perceiving the emotional nuances during social interactions. 

Recent research has expanded the exploration of ToM in HD to include neuroeconomic games such as the 

ultimatum game and dictator game. These games assess the appreciation of fairness rules and reciprocity 

(Brüne et al., 2021). Interestingly, people with HD tend to reject unfair offers in the ultimatum game similar to 

control subjects but tend not to punish unfairness observed from a third-party perspective. This diminished 

altruistic punishment correlates with deficits in executive functioning, which is related to social decision-making 

(Lucifora et al., 2021c), social cognition and empathy (Eslinger et al., 2011). 

A few studies have investigated empathy in people with manifest and premanifest HD compared to control 

participants using self-report empathy questionnaires (Maurage et al., 2016; Puig-Davi et al., 2021). Maurage et 

al. (2016) used the Empathy Quotient Scale and found that people with manifest HD reported lower scores on 

cognitive empathy scales, while affective empathy scores appeared similar to healthy controls (Maurage et al., 

2016). Individuals with premanifest HD showed no significant difference compared to healthy controls in both 

cognitive and affective empathy scores (Maurage et al., 2016). Puig-Davi et al. (2021) administered the 

Cognitive and Affective Empathy Test (TECA) and found that individuals with premanifest HD scored lower on 

perspective-taking (cognitive empathy) and empathic distress (affective empathy) subscales. In contrast, lower 

scores in almost all TECA subscales were observed in early manifest HD individuals. This study also 

demonstrated an association between empathy measures and decreased gray matter volume and cortical 

thickness in several brain regions, including frontotemporal, parieto-occipital, basal ganglia, and limbic regions. 

A recent profiling method by Turner et al. (2022) reported that a large proportion of people with premanifest HD 

fall below healthy volunteers’ median values on ToM (>80%), social perception (>57%), empathy (>54%), and 

social behavior (>40%) (Turner et al., 2022). However, only a small proportion of these individuals displayed 

marked problems with social cognition, highlighting the need for individual-level assessments. 

Finally, Baez et al. (2016) found lower presence of schadenfreude (the pleasure in others’ misfortunes) in 

people with HD, which may be linked to anomalies in the cortico-striatal reward system (Baez et al., 2016). 

Lower schadenfreude ratings were associated with lower gray matter volume in the bilateral ventral striatum 

(including the nucleus accumbens) and the right superior parietal lobule and precuneus in people with HD (Baez 

et al., 2018). 

 

3.2. Tourette syndrome 

Tourette Syndrome (TS) is a childhood-onset neurodevelopmental disorder characterized by the presence of 

tics, which are repetitive and patterned movements and vocalizations that escape volitional control despite 

being potentially inhibited by subjects on demand (Ganos & Martino, 2015; Vicario et al., 2016). Motor and vocal 

tics can vary in complexity, ranging from simple movements like excessive blinking to more elaborate actions 

such as repeatedly touching objects. Similarly, vocal tics can be as simple as clearing the throat excessively or 

as complex as repeating words and phrases. In some cases, tics may lead to echolalia or, less frequently, 

coprolalia. The defining characteristic of tics is the sense of urgency that accompanies them, which presents as 

an intrusive and premonitory sensation and dissipates once the tics are performed. Tics typically emerge around 

the age of 6–7 and reach their peak during early adolescence. However, symptoms may gradually diminish in 

certain instances and even disappear in adulthood (Müller-Vahl et al., 2019). 

The disorder is believed to involve dysfunction in the cortico-basal ganglia-thalamo-cortical circuits, which play a 

crucial role in motor control and sensorimotor integration (Ganos & Martino, 2015). Disruptions in the balance of 

neurotransmitters, particularly dopamine and gamma-aminobutyric acid (GABA), within these circuits have been 

implicated in the development of tics (Ganos, 2016) The increased excitability of brainstem interneurons, as 

observed in studies on blink reflex and startle reflex, suggests abnormalities in the brainstem and subcortical 

structures (Berardelli et al., 2003). Some animal models suggest involvement of cholinergic and histaminergic 

neurotransmission in addition to GABAergic inhibition disruption (Ganos, 2016).Neuroimaging studies have 



consistently observed abnormalities in the cortico-striatal dopaminergic circuitry of individuals with TS (Felling & 

Singer, 2011; Plessen et al., 2009). These anomalies manifest as asymmetry or reduction in the putamen and 

caudate nucleus, as well as cortical hyperactivity in the insula, supplementary motor area (SMA), ACC, and 

parietal operculum. These brain regions are implicated in generating the sense of urgency that precedes tic 

expression (Gagné, 2019; Plessen et al., 2009). Disruption of cortico-cerebellar regulatory loops has also been 

suggested based on the findings of reduced volumes of cerebellar structures (Tobe et al., 2010; see also 

Eidelberg et al., 1998; Schirinzi et al., 2018; Brüggemann, 2021). 

Regarding social perception, Mermillod et al. (2013) found that individuals with TS have deficits in recognizing 

emotional facial expressions of anger, surprise, and sadness. However, Drury et al. (2012) did not observe 

differences in facial emotion recognition in children and adults with TS, but did observe difficulty in identifying 

anger prosody in adults with TS. 

In a study conducted by Neuner et al. (2010), individuals with and without TS we examined using fMRI to 

perform a gender recognition task involving emotional faces (Neuner et al., 2010). The study found that 

individuals with TS exhibited hyperactivity in the left amygdala compared to controls. This hyperactivity was 

negatively correlated with the extroversion trait and involved various brain areas including the MFC, dorsolateral 

prefrontal areas, inferior frontal gyrus, medial temporal gyrus for all the emotions presented (Neuner et al., 

2010). 

Another study by Kalsi et al. (2019) investigated a small sample of children with TS using EEG. They found that 

children with TS showed shorter latency of the P1 and N170 components of event-related potentials (ERPs) in 

response to anger faces compared to controls. Source reconstruction suggested greater activation in the 

occipital cortex and lower activation in the amygdala, temporal cortex, and cingulate cortex in response to anger 

stimuli in children with TS (Kalsi et al., 2019). However, given the small sample size and the limitations of EEG 

in recording deep nuclei activity, the generalizability of these findings is challenging. 

 

Studies have also investigated the role of the insula in TS during emotion perception tasks. Rae et al. (2018) 

found hyperactivation of the anterior insula in individuals with TS compared to controls, both for angry and 

neutral faces. This hyperactivation was associated with increased functional connectivity of the insula with 

sensorimotor areas involved in the generation of tics such as the premotor cortex, SMA, primary motor cortex 

and putamen. Furthermore, increased connectivity of the insula with the globus pallidus and thalamus correlated 

with tic severity, while the SMA correlated with premonitory urgency (Rae et al., 2018). These findings suggest 

that individuals with TS may exhibit hypersensitivity toward interoceptive experiences associated with social 

stimuli due to the altered connectivity with striatal-corticothalamic circuits involved in symptom generation. 

 

Six studies reported ToM impairments in individuals with TS (Channon et al., 2012; Drury et al., 2018; Eddy & 

Cavanna, 2015; Eddy et al., 2010a, 2010b, 2011). These studies have reported various deficits. One study by 

Channon et al. (2012) found that individuals with TS alone have difficulties detecting faux pas (social errors) but 

can accurately explain detected faux pas. Similarly, Eddy et al. (2010b) reported that individuals with TS alone 

do not have problems explaining noticed faux pas but have difficulty judging whether a faux pas has occurred 

(Eddy et al., 2010b). However, in a mixed TS sample, individuals had increased difficulties in explaining faux 

pas even when accurately detected, and it is unclear if this also applies to the subset with TS alone (Eddy et al., 

2010a). Individuals with TS may exhibit unconventional responses to social stimuli. For example, they may have 

atypical reactions to unfair offers in the ultimatum game and interpret humorous material unconventionally (Eddy 

et al., 2011). Consistent with this, people with TS may show deficits in comprehending indirect sarcasm (Drury 

et al., 2018) and a tendency to hyper-mentalization, attributing meaningful behaviors to random movements of 

triangular figures, which has been linked to an overactivity of the dopaminergic system (Eddy & Cavanna, 

2015). 

Other studies found no significant differences in ToM task performance in individuals with TS when compared to 

controls (Channon et al., 2004). Instead, they showed substantial differences in the brain’s structural, functional, 

and connectivity levels using brain imaging techniques (Eddy et al., 2016, 2017). In particular, it was noted that 

functional alterations at the level of the rTPJ, posterior cingulate cortex and right amygdala during a ToM task 

involving reasoning about false belief (Eddy et al., 2016). Activity in rTPJ correlated with the symptoms of 

echophenomena (imitation of other people’s speech and actions), and altered impulse control, whereas activity 



in rTPJ and amygdala correlated with tic urgency. This suggests a possible affective component in the 

generation of tics and a difficulty in distinguishing one’s perspective from that of others, due to altered activity of 

the rTPJ (Eddy et al., 2016). 

Regarding affective ToM, Eddy et al. (2011) suggested that people with TS had difficulties reasoning about envy 

and gloating expressions, as measured by the Socially competitive emotions task (SCET). The authors also 

reported deficits in interpreting facial expressions, evaluated by the RMET. During an RMET task, individuals 

with TS exhibited altered brain activity compared to controls. Specifically, increased activity emerged in the left 

orbitofrontal cortex (OFC), posterior cingulate, right amygdala and rTPJ. Conversely, reduced activity was found 

in the left inferior parietal cortex. These findings suggest that individuals with TS have altered processing of 

predominantly negative emotions and mentalizing abilities (Eddy et al., 2017). 

Two studies assessed empathy in people with TS using the Interpersonal Reactivity Index (Channon et al., 

2004; Eddy et al., 2015). Channon et al. (2004) found no significant differences, but Eddy et al. (2015) with a 

larger sample reported that individuals with TS showed a reduced tendency to assume the others’ perspective 

(perspective taking, PT scale) and a high degree of distress in interpersonal situations (personal distress, PD 

scale) compared to controls. However, no significant differences emerged in other affective empathy (Empathy 

Concern) and cognitive empathy (Fantasy) subscales. 

 

3.3 Dystonia 

Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions that lead to 

abnormal, often repetitive movements, postures, or both (Albanese et al., 2013). It encompasses various 

symptoms, including torticollis, limb and trunk dystonia, writer’s cramp, blepharospasm, and spastic dysphonia 

(Breakefield et al., 2008). Isolated adult-onset dystonia includes different types of dystonia, such as cranial 

dystonia (e.g., blepharospasm, oromandibular, and lingual dystonia), cervical dystonia, laryngeal dystonia, and 

hand dystonia (Phukan et al., 2011). The involvement of basal ganglia deficits in developing dystonia is strongly 

supported by several lines of evidence derived by from animal models (Jinnah et al., 2017). Basal ganglia 

lesions resulting from brain injuries, metabolic diseases, and neurodegenerative conditions are linked to 

secondary dystonia (Kojovic et al., 2013). Studies on people with dystonia undergoing deep brain stimulation 

(DBS) have demonstrated abnormal neural firing patterns, synchronized oscillations, and expanded receptive 

fields within the basal ganglia-thalamic circuit (Gatev et al., 2006; Hendrix & Vitek, 2012). Finally, there is 

evidence that dystonia may be considered a network disorder involving not only the cortico-basal ganglia 

networks but also the cerebellar pathways (Cerasa & Quattrone, 2016; Louis, 2018; Mavroudis et al., 2021; 

Tewari et al., 2017), as well as collicular – pulvinar–amygdala subcortical networks (Rafee et al., 2021). 

Regarding social cognition, a few studies investigated the impairments and differences in emotion recognition in 

people with dystonia. Individuals with cranial or cervical dystonia have shown impairments in recognizing 

negative emotional expressions, particularly the facial expression of disgust (Rinnerthaler et al., 2006). 

Additionally, they may experience difficulties in recognizing anger from prosody, which relates to the dimension 

of arousal and valence, as assessed through self-report measures during a listening task (Nikolova et al., 2011). 

Another study focusing on young individuals (9 children and 12 adolescents) with myoclonus dystonia, a form of 

early-onset dystonia primarily affecting the upper limbs, found no differences in emotion recognition compared 

to controls. However, they discovered that a mutation in the ϵ-sarcoglycan gene (SGCE) was associated with 

greater difficulty in emotion recognition (Coenen et al., 2021). Moreover, a study specifically investigating 

individuals with cervical dystonia identified significantly more difficulties in recognizing fearful faces in this group 

(Ellement et al., 2021). 

While these findings suggest altered recognition of facial emotion expressions in cranial or cervical dystonia, but 

not when dystonia affects the upper limbs, it is important to note that there are also discrepant findings that may 

attributed to the various instruments used in these studies. For instance, people with cervical dystonia exhibited 

lower performance than the standard norms on naming facial expressions and emotional prosody when 

assessed using subtests of the Florida Affect Battery (Burke et al., 2020). However, most patients showed 

normal performance on social cognition subtests from the Wechsler Adult Intelligence Scale IV (Ellement et al., 

2021). Furthermore, research indicate that a group of patients with a form of dystonia primarily affecting the 

upper limbs, demonstrate brain activation patterns similar to controls when exposed to emotional faces or 

intense emotional scenes (Espay et al., 2018a). In contrast, individuals with functional dystonia, a type of 

dystonia that arises from psychogenetic causes and affects various body parts, showed distinct changes in 



brain activation compared to both healthy controls and individuals with organic dystonia (Espay et al., 2018a). 

These changes were primarily observed in visual areas such as the occipital cortex and fusiform gyrus, as well 

as sensorimotor regions, during observation of emotional faces and extremely disgusting or offensive scenes 

(Espay et al., 2018a). 

Social perception deficits in dystonia are thought to result from altered connections between subcortical 

structures, such as the basal ganglia and cerebellum, and cortical regions involved in social perception. 

However, scholars have also proposed that changes in collicular – pulvinar–amygdala subcortical networks 

could underlie non-motor symptoms in dystonia, including social perception deficits (Rafee et al., 2021). 

Moreover, deficits in social perception abilities can be associated with the psychiatric comorbidity profile. 

Specifically, better performance on an Affect Naming task was linked to comorbid and more severe anxiety in 

individuals with cervical dystonia (Ellement et al., 2021). 

Recently, studies have investigated affective and cognitive ToM in individuals with dystonia. Lagravinese et al. 

(2021) investigated different motor phenotypes in cervical dystonia (Lagravinese et al., 2021) and hypothesized 

that the malfunctioning cerebral network nodes might differ between different dystonia phenotypes. Specifically, 

they suggested that abnormal cerebellar processing could contribute to the motor phenotype with tremors 

(Avanzino et al., 2018, 2020; Bologna & Berardelli, 2017; Prudente et al., 2014). The study’s results showed 

that both affective and cognitive aspects of ToM were impaired in people with cervical dystonia (Lagravinese et 

al., 2021). Individuals with cervical dystonia and tremors showed more significant impairments in cognitive ToM 

compared to those without tremors, suggesting that the cerebral network responsible for motor and non-motor 

impairments might be more widespread in patients with tremor (Lagravinese et al., 2021). Another study by 

Czekóová et al. (2017) examined deficits in recognizing social faux pas in cervical dystonia. They found that 

individuals with cervical dystonia mistakenly perceived behavior as inappropriate more frequently than controls 

in situations where no faux pas had occurred, suggesting an impairment in ToM and the ability to recognize 

social norms (Czekóová et al., 2017). Finally, a recent study quantified the proportion of individuals with cervical 

dystonia who perform below normative values on ToM tests (Ellement et al., 2021). The study revealed that only 

about 22% of these patients underperformed in the domain of social cognition (Ellement et al., 2021). 

Consistent with this, a study highlighted the tendency of people with cervical dystonia to present impairment in 

basic social perception tasks (naming facial affect and emotional prosody) but not in tasks related to ToM, like 

the RMET (Burke et al., 2020). Also, in most people with cervical dystonia cognitive, despite deficits in social 

perception and some aspects of TOM, cognitive and affective empathy appears comparable to that of healthy 

controls (Czekóová et al., 2017; Ellement et al., 2021). 

 

3.4. Essential tremor 

Essential Tremor (ET) is a common movement disorder that primarily manifests with upper limb postural and 

kinetic trembling. These tremors can be observed during daily activities and are elicited during neurological 

examination using various maneuvers (Louis, 2019). The diagnosis of ET requires the tremors to persist for at 

least three years and not be associated with other conditions such as dystonia, ataxia, or Parkinson’s disease. 

The pathophysiology of ET remains poorly understood. Post-mortem examinations, neurophysiological 

investigations, and animal studies suggest the involvement of a cerebello-thalamo-cortical network 

encompassing the cerebellum, brainstem, thalamus, and sensorimotor areas of the cortex (Hallett, 2014; 

Hopfner & Deuschl, 2018). Functional imaging studies have consistently shown cerebellar hyperactivity during 

rest and during tremors (Sharifi et al., 2014). Several studies have also shown alterations in the Purkinje cells 

and basket cells of the cerebellum, and the olive-cerebellar climbing fibers, along with possible compensatory 

mechanisms involving hypertrophy of the GABAergic basket cells to restore inhibitory cerebello-cortical function. 

When this compensatory mechanism becomes insufficient, the symptoms and progression of the disease can 

occur (Louis & Faust, 2020). 

In the domain of social perception, researchers have found an inverse relation between tremor severity in ET 

and facial emotion recognition (Auzou et al., 2014). Another study did not find activation differences between 

individuals with ET and healthy controls during an emotion perception task (Espay et al., 2018b), although it 

reported greater volume in the right amygdala and reduced volume in the left cerebellum and occipital pole in 

the ET group (Espay et al., 2018b). 



Individuals with ET exhibited deficits in tasks requiring the attribution of mental states (cognitive ToM), but not in 

tasks requiring emotion attribution (affective ToM) (Santangelo et al., 2012). These deficits persist even when 

controlling for memory performance (Santangelo et al., 2012). 

Finally, research on empathy function in ET is currently lacking. 

 

4. Discussion 

In this article, we present a systematic reviewed of 50 published studies that investigate social cognition in 

hyperkinetic movement disorders. Our comprehensive analysis of these studies reveals consistent evidence of 

altered social cognition in individuals with these neurological conditions. The key findings and associated social 

cognition impairments for each movement disorder are summarized in Table 1. 

 

4.1. Altered social cognitive functions in hyperkinetic movement disorders 

Our review highlights social perception deficits in people with manifest HD. These individuals have difficulties 

recognizing emotions, particularly negative ones, and exhibit deficits in ToM (emotional attribution, 

understanding of others’ mental states, understanding of sarcasm), social decision-making, and both cognitive 

and affective empathy. They also tend not to experience schadenfreude due to alterations in the reward circuit. 

People with premanifest HD show worsening social perception and ToM as their motor symptoms progress. 

They also perceive a lower salience to social stimuli and tend to score lower on perspective-taking and 

empathic distress compared to healthy controls. These deficits in social cognition in premanifest HD are usually 

mild to moderate and progress as the disease advances. 

People with TS may exhibit altered cognitive ToM, although not all studies confirm this. Some cognitive 

impairments observed in TS include difficulties detecting faux pas, unconventional reactions to social stimuli, 

deficits in indirect sarcasm comprehension. Additionally, people with TS may show hyper-mentalization but 

deficits in affective ToM, particularly in reasoning about envy and gloating expressions. Social perception 

deficits, such as difficulties recognizing emotional facial expressions and identifying anger prosody, have also 

been observed. Neuroimaging studies have shown hyperactivity in several brain regions, including the left 

amygdala and prefrontal areas, during emotion recognition tasks individuals with TS. Additionally, these 

individuals exhibit increased functional connectivity between insula and sensorimotor areas involved in tic 

generation. Furthermore, empathy research show that individuals with TS may show reduced perspective-taking 

ability and high social distress. 

People with dystonia, specifically cranial and cervical dystonia, exhibit difficulties in the recognition of negative 

emotions, such as facial expression of disgust or fear and emotional prosody of anger. These deficits are not 

observed in dystonia affecting the upper limbs. Additionally, individuals with cervical dystonia show deficits in 

cognitive ToM tasks requiring to recognize other people’s intentions. ToM performance correlate with deficits in 

executive functions, suggesting a contribution of domain-general abilities in explaining ToM impairments, in line 

with the literature in healthy individuals (Carlson et al., 2002) and other clinical populations (Roca, 2016). On the 

other hand, cognitive and affective empathy appear intact in people with dystonia. 

People with ET experience specific impairments in their cognitive abilities related to the understanding of other 

people’s mental states (cognitive ToM), while their emotional attribution abilities (affective ToM) remains intact. 

These individuals may exhibit altered social perception, as evidenced by a negative correlation between the 

severity of tremors and the recognition of facial emotions, particularly fear, and joy. However, there is currently a 

lack of research on empathy specifically related to ET. 

 

4.2. Altered brain networks in hyperkinetic movement disorders 

Overall, the reviewed evidence from HD, TS, dystonia and ET consistently indicates the presence of social 

perception and ToM deficits in these conditions. These deficits can be at least partially attributed to alterations in 

the basal ganglia and cerebellum and their pattern of connectivity with other subcortical and cortical regions 

(Fahn et al., 2011). 



HD is characterized by basal ganglia degeneration, which occurs many years before the onset of symptoms 

(Tang et al., 2019). Imaging studies have revealed progressive degeneration in the striatum and other brain 

areas, with the caudate and putamen exhibiting the greatest and earliest degeneration (Tang et al., 2019). 

Moreover, cerebellar anomalies are common in HD (Franklin et al., 2021; Padron-Rivera et al., 2021). 

TS is marked by alterations in the cortico-striatal dopaminergic circuitry, with reduction or asymmetry of the 

putamen and caudate nuclei, along with cortical hyperactivity in specific regions associated with the feeling of 

urgency preceding tic expression. These regions include the insula, SMA, ACC, and parietal operculum (Gagné, 

2019). Also, alterations of the cerebellum have been reported in individuals with TS (Lerner et al., 2007; Tikoo et 

al., 2021). 

Several lines of evidence, including research in animal models (Neychev et al., 2011), support the role of basal 

ganglia deficits in dystonia development. It has been proposed (Tewari et al., 2017) that dystonia may represent 

a network disorder involving not only cortico-basal ganglia networks but also cerebellar pathways. Abnormalities 

in cerebellar structural, function, and connectivity with other areas have been found in people with dystonia, 

along with the finding of a decrease in symptoms following cerebellar transcranial magnetic stimulation (TMS) 

(Tewari et al., 2017). Additionally, collicular – pulvinar–amygdala subcortical networks could also play a role in 

dystonia and contribute to social cognition deficits (Rafee et al., 2021). 

In people with ET, alterations have been identified in the cerebellum, brainstem, thalamus, and sensorimotor 

areas of the cortex (Hopfner & Deuschl, 2018; Louis & Faust, 2020). A compensatory mechanism involving 

GABAergic cerebellar circuits aims to restore the inhibitory function of the cerebellum on the cortex. However, 

when this compensatory mechanism becomes insufficient, symptoms and disease progression occur (Louis & 

Faust, 2020). 

In summary, hyperkinetic movement disorders are associated with social perception and ToM deficits. These 

deficits can be at least in part attributed to alterations in the basal ganglia and/or cerebellum, along with 

involvement of other subcortical and cortical regions, with distinct patterns of impairments observed in different 

clinical categories. For example, individuals with ET display deficits in cognitive ToM but maintain intact affective 

ToM (Santangelo et al., 2012). Moreover, impaired emotion recognition is found only in individuals with more 

severe tremors. This contrasts with individuals with HD, TS, and cervical dystonia, who exhibit impairments in 

social perception and both cognitive and affective domains of ToM, although to a different degree. These 

differences could be attributed to the minor involvement of the basal ganglia in ET’s pathophysiology (Bhalsing 

et al., 2013; Klaming & Annese, 2014), with little or no alterations in motor and limbic dopaminergic pathways 

associated with these subcortical regions (Di Giuda et al., 2012). On the other hand, the observed deficit in 

cognitive ToM in ET could be associated with dysfunction in the prefrontal-cerebellar circuit, as suggested by 

Cerasa and Quattrone (2016). 

 

4.3. Functional role of subcortical regions in social cognition 

Traditional attempts to identify the neural correlates of social cognition have often overlooked the relevance of 

subcortical structures, with the exception of the amygdala, which is well known for its role in emotions and social 

perception (Adolphs, 2010; Adolphs et al., 2001; Calder, 1996). Our systematic review of social cognition 

deficits in hyperkinetic motor disorders emphasizes an important role played by the basal ganglia and 

cerebellum. We report that these subcortical regions, crucial for motor control, are critical in emotion 

recognition-based social perception tasks, as evidenced by impaired performance across individuals with HD, 

TS, cervical dystonia and severe ET. Interestingly, similar impairment has been observed in hypokinetic 

movement disorders associated with basal ganglia degeneration, such as PD, with reduced facial mimicry and 

reduced recognition of emotions in facial expressions and prosody (Coundouris et al., 2019). Taken together 

these results are relevant for embodied-grounded cognition models. These models propose that cognitive 

processes, including those involved in emotion perception, are deeply rooted in sensorimotor experiences and 

bodily interactions with the environment (Barsalou, 2008; Borghi et al., 2013; Gallese & Sinigaglia, 2011; 

Niedenthal et al., 2010; Pezzulo et al., 2011; Shapiro, 2011). In this vein, impaired sensorimotor processing 

would make observers less able to motorically simulate perceived facial or vocal emotional expressions, leading 

to poor emotion recognition (Borgomaneri et al., 2020; Niedenthal et al., 2010; Wood et al., 2016). Therefore, 

the pattern of social perception deficits following alteration of motor control in hyperkinetic movement disorders 

provide clinical support to these theoretical models. 



Another major result of our review is that hyperkinetic movement disorders show impairments even in more 

abstract and complex cognitive processes related to ToM and empathy. Also in this case, this impairment is also 

shared by hypokinetic movement disorders, as people with PD show impairments in cognitive and affective ToM 

(Coundouris et al., 2020). In hyperkinetic disorders, the ToM deficit mainly refers to the cognitive component in 

ET, whereas for cervical dystonia, and TS and HD in particular, it also involves affective components. Regarding 

empathy, people with HD and TS report reduced perspective taking (cognitive empathy). On the other hand, 

personal distress (a disposition negatively associated with more mature forms of affective empathy) seems to 

be enhanced in TS. This different pattern of results is likely due to different dysfunctions in brain regions 

involved in social cognition and emotional processing such as the amygdala, dorsal striatum, and insula. 

While the functional relevance of basal ganglia and cerebellum to motor control is well established, there is a 

growing recognition of their importance in affective and cognitive functions. These subcortical structures, along 

with their direct connections to the cortex, form an expanded limbic and associative circuit (Bostan & Strick, 

2018; Pierce & Péron, 2020). The basal ganglia have a fundamental role in action selection and modulation of 

movement vigor, but contemporary accounts of their function, suggest a general role in controlling, or “gating”, 

the influx of signals from other cortical areas to the prefrontal cortex (Frank et al., 2004; Pierce & Péron, 2020; 

Stocco et al., 2010), which could explain the impact of basal ganglia degeneration in specific cognitive deficits, 

including cognitive aspects of ToM and empathy found in hyperkinetic motor disorders. The basal ganglia are 

also involved in the reward circuitry, contributing to various cognitive and emotional functions (Bostan & Strick, 

2018; Pierce & Péron, 2020; Sesack & Grace, 2010). They are modulated by dopaminergic signals and play an 

active role in behavioral reinforcement mechanisms (Montague et al., 2004). The basal ganglia are known to 

contribute to learning through stimulus-response associations and influence decision-making (Pennisi et al., 

2023; Vicario et al., 2020a). They also play a role in predicting stimulus salience and contribute to the 

production of positive emotions (Schultz, 1998, 2015). They are also implicated in cognitive functions such as 

time perception (Rao et al., 2001; Vicario et al., 2020c). As suggested by the results of our work, some deficits 

in social cognition, like the perception of social stimuli, might depend on imbalances in the reward circuitry, as 

observed for the lack of schadenfreude in HD patients. 

Evidence of a link between basal ganglia and deficits in social cognition also comes from research on other 

diseases where dysfunction of the basal ganglia is likely to occur. For instance, Wilson’s disease, a condition 

characterized by degenerative changes in the basal ganglia, has been associated with impairments in the 

recognition of anger, fear, disgust, as well as mentalization abilities (Peyroux et al., 2017). Similarly, research 

has indicated that schizophrenia is characterized by aberrant patterns of basal ganglia activation (Pierce & 

Péron, 2020) and deficits in social cognition, including face and prosody perception, affect sharing, mentalizing, 

emotion experience and emotion regulation (Green et al., 2015; Yu et al., 2014). Furthermore, autism, which is 

characterized by compromised reasoning about intentions and emotions (Boucher, 2012) and reduced empathy 

(Baron-Cohen, 2010), has been linked to dysfunction in the basal ganglia (Subramanian et al., 2017). 

Another essential structure involved in the pathophysiology of hyperkinetic movement disorders is the 

cerebellum. Indeed, cerebellar anomalies are common in HD (Franklin et al., 2021; Padron-Rivera et al., 2021), 

TS (Lerner et al., 2007; Tikoo et al., 2021), dystonia (Brüggemann, 2021; Eidelberg et al., 1998; Schirinzi et al., 

2018), and ET (Cerasa & Quattrone, 2016; Louis, 2018; Mavroudis et al., 2021). Recent research has shed light 

on the link between the cerebellum and social cognition, indicating its role beyond motor functions (Sokolov, 

2018; Van Overwalle et al., 2020). A meta-analysis involving over 350 fMRI studies revealed that the cerebellum 

is activated during tasks related to social cognition, such as observing human actions, inferring others’ 

intentions, and forming inferences about personality traits and abstract thinking (Van Overwalle et al., 2014). 

Leggio and Molinari (2015) have shown how the cerebellum can play a central role in predictive processes, 

generating internal models based on temporal and spatial patterns, which are fundamental for mentalizing and 

constructing models of sequences of events. Studies have also highlighted the connectivity between the 

cerebellum and cortical areas responsible for social cognition, such as the TPJ, MPFC, OFC and the posterior 

STS (Nguyen et al., 2017; Sokolov et al., 2012). Non-invasive stimulation techniques, like repetitive TMS (rTMS) 

and transcranial direct current stimulation (tDCS), have shown the potential to improve performance in social 

perception tasks. For example, high-frequency rTMS (20 Hz for 15 min) applied to the cerebellar vermis 

enhances reactivity to positive emotional stimuli, such as happy faces (Schutter et al., 2009), while anodal and 

cathodal tDCS (2 mA for 20 min) applied bilaterally in the cerebellar hemispheres reduces the reaction time in 

identifying negative emotions from faces (Cattaneo et al., 2021; Ferrucci et al., 2012). 

Similarly, our review highlights associations between deficits in social perception and other sensorimotor areas, 

such as the premotor and motor areas, which are considered key nodes of the Mirror Neuron System (Keysers 



et al., 2010; Rizzolatti & Sinigaglia, 2016). Non-invasive brain stimulation studies in healthy participants have 

demonstrated that interfering with these regions impairs social perception (Avenanti & Urgesi, 2011; Paracampo 

et al., 2017, 2018a, 2018b). Interestingly, enhancing the same regions can improve social perception (e.g., 

Avenanti et al., 2018). This suggests the possibility of using brain stimulation techniques to address social 

perception deficits in patients with movement disorders. These techniques have been successfully used to 

promote neural plasticity and sensorimotor functioning in healthy humans and clinical populations (Avenanti et 

al., 2012; Casula et al., 2023; Lefaucheur et al., 2020; Markovic et al., 2021; Vicario et al., 2020b, 2020d). 

Given the altered connectivity patterns observed in hyperkinetic movement disorders, it could be particularly 

interesting to test the efficacy of TMS protocols aimed at strengthening cerebellar-cortical and cortico-cortical 

connectivity (Chiappini et al., 2018, 2020; Lu et al., 2012; Turrini et al., 2022, 2023c). One promising approach 

is the use of cortico-cortical paired associated stimulation (ccPAS), which has been successfully applied to 

enhance brain connectivity (Buch et al., 2011; Trajkovic et al., 2023) and improve motor functions (Fiori et al., 

2018; Turrini et al., 2023b, 2023a) and perceptual functions in humans (Di Luzio et al., 2022; Romei et al., 

2016), including social perception functions (Borgomaneri et al., 2023). By modulating the neural circuits 

involved in social perception, ccPAS may offer a potential strategy to address social cognition deficits in clinical 

populations characterized by altered connectivity. 

 

4.4. Methodological issues, limitations, and future perspectives 

In order to understand the extent to which deficits in social cognition may be related to general cognitive 

disorders, such as executive functions, studies included in the review have investigated the correlation between 

social cognition tests and executive function tests. For instance, Burke et al. (2020) found a correlation between 

social cognition tests, such as the RMET, and encoding and executive skills in dystonia. Similarly, Czekóová et 

al. (2017) reported a correlation between cognitive ToM, working memory, and semantic verbal fluency 

(Czekóová et al., 2017). However, most studies on TS do not show a relationship between executive functioning 

and social cognition (Channon et al., 2004, 2012; Drury et al., 2018; Eddy et al., 2010a, 2010b, 2011). On the 

other hand, conflicting results exist for HD. For example, Bayliss et al. (2019) did not find any correlation 

between RMET and Montreal Cognitive Assessment (MoCA), while Unti et al. (2018) report correlations 

between MoCA and MMSE with various social cognition tests in HD, including faux pas, strange stories test, 

and recognition of emotional faces. Finally, in ET, executive function and social cognition are predominantly 

associated. Auzou et al. (2014) found that total Ekman task scores were related to semantic and letter fluency, 

and Santangelo et al. (2012) showed correlations between cognitive theory of mind, measured through the ATT 

(Advanced Test of ToM), and the FAB (Frontal Assessment Battery) score, the phonological fluency score, and 

the global score of WCST (Wisconsin Card Sorting Test), all tests that involve executive function. Taken 

together, these reports suggest that social cognition deficits may be partially attributed to general cognitive 

dysfunctions. However, due to the variability in the results and the absence of quantitative meta-analyses, 

further investigations are required to reach firm conclusions in hyperkinetic movement disorders. 

Among the included studies in this systematic review, approximately 58% (29 studies) provided clarification on 

whether the examined patients were under pharmacological treatment, which could have influenced their social 

cognition performance. These findings emphasize the necessity for further investigation to understand the 

impact of drugs and other treatments on social cognition performance in individuals with hyperkinetic movement 

disorders. It should be noted, however, that the reviewed studies generally exhibited adequate methodology 

quality, with minimal comorbidity observed in the analyzed samples. While a few studies indicated a high risk of 

bias (see Figure 2 and supplementary materials), most of the reported studies demonstrated suitable 

methodology and acceptable reliability. Therefore, although a quantitative meta-analysis was not conducted to 

assess the specific impact of methodological factors on the patterns of social cognition deficits observed across 

different studies, the qualitative results reported in this review offer an adequate summary of current state-of-

the-art, and these results are based on methodological robust studies. 

In the existing literature, there has been a predominant focus on studying social cognition in HD, while 

comparatively less attention has been given to the investigation of TS, dystonia, and ET. Therefore, additional 

research is crucially needed to explore and elucidate the underlying mechanisms of social cognition across the 

different hyperkinetic movement disorders. There is need to carry out more systematic research addressing 

different aspects of social cognition within the same sample of patients. In particular, there is a need for more 

research focusing on empathy, to better understand its different facets. For example, in addition to relying solely 



on self-report measures of cognitive and affective empathy, future investigations should incorporate 

complementary approaches, including gathering judgments from caregivers or other observers to provide 

external perspectives on empathic abilities (Eslinger et al. 2011). Furthermore, neurophysiological investigations 

of empathic brain responses, using paradigms such as empathy for pain (Avenanti et al., 2005, 2005; Lamm et 

al., 2019, 2019; Singer et al., 2004, 2004) or empathy accuracy (Gallo et al., 2018, 2018; Paracampo et al., 

2017, 2017, 2018b, 2018b; Zaki et al., 2009, 2009), can offer valuable insights into the neural mechanisms 

underlying impaired empathy in movement disorders. 

Developing more ecological methodologies for assessing social cognition is also crucial. In this regard, virtual 

reality technology could serve as a valuable tool, allows patients to immerse themselves in controlled social 

contexts that could facilitate more realistic experiences requiring social perception, empathy and mentalizing 

processes (Daher et al., 2021; Grasso et al., 2019, 2020; Lucifora et al., 2020, 2021a, 2021b). However, it is 

important to note that social cognition encompasses various processes, including attribution, attitudes, social 

schema, social attention, and social memory. Currently, these aspects remain underexplored in the literature on 

hyperkinetic movement disorders. On the other hand, it is worth acknowledging that literature on moral decision-

making and/or moral reasoning was not included in this review, despite the presence of some evidence in 

existing studies on hyperkinetic movement disorders (Vicario et al., 2021). Investigating these aspects would 

provide a more comprehensive understanding of social cognition deficits in this class of clinical conditions. 

To advance our understanding of how hyperkinetic movement disorders impact social cognition, future research 

should embrace an integrative approach, combining multiple neuroimaging, neurophysiological, and brain 

stimulation techniques (Chiappini et al., 2022; Ritter & Villringer, 2006; Turrini et al., 2023a; Ystad et al., 2011; 

Zanon et al., 2018) with a systematic investigation of multiple behavioral measures of processes implicated in 

social cognition. In this vein, network neuroscience, an emerging discipline that focuses on modeling and 

analyzing brain networks composed of interacting neural elements, holds great promise in this endeavor and 

can enrich our understanding of the broader neural context in which social behaviors and interactions between 

brain regions occur (Baek et al., 2021; Barrett & Satpute, 2013; Bassett & Sporns, 2017). 

Our current understanding of social cognition suggests that it involves various processing levels, including 

bodily, emotional, motivational, cognitive, and neural aspects. Therefore, it is essential to go beyond 

unidimensional approaches and mere localizationist methods and instead identify and integrate each processing 

level. Our study emphasizes the relevance of basal ganglia and cerebellum, which are known to be linked 

together to form an integrated functional network (Bostan & Strick, 2018; Bostan et al., 2010; Pierce & Péron, 

2020; Sesack & Grace, 2010). These subcortical structures play a crucial role in bridging corporeality and 

cognition, integrating the processing of motor control, emotion, and inter-subjectivity (Koziol et al., 2012). 

However, we have limited knowledge about how changes in connectivity between the basal ganglia, cerebellum, 

and cerebral cortex, as well as their interactions with bodily process, affects social cognition in hyperkinetic 

movement disorders. To gain a better understanding of the neural mechanisms that support social cognition, it 

is crucial for future research to prioritize investigating this specific issue. 

It is increasingly recognized that assessing social cognition is important to understand individuals’ abilities for 

successful social interactions, as well as, their overall mental health and well-being (Etchepare & Prouteau, 

2018). Our review provides extensive evidence of deficits in social perception, empathy, and ToM across 

distinct hyperkinetic movement disorders. However, traditional clinical assessment focuses on motor symptoms 

and functional impairments only. By incorporating the assessment of social cognition deficits into the clinical 

evaluation, it is possible to gain a more comprehensive understanding of the individual’s overall cognitive and 

functional profile. This integrated approach could enable proactive interventions aimed at improving social 

functioning and overall quality of life. 
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