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Abstract: The Ethiopian magic scrolls are traditional parchment artifacts used by the Christians of
Ethiopia as protection against disease and demonic possessions. On the occasion of their restoration
in the Accademia delle Belle Arti di Bologna (Italy); a preliminary characterization before the treatments
has been performed on four Ethiopian scrolls belonging to the Archivio storico della provincia di Cristo
Re dei Frati Minori dell’Emilia Romagna of Bologna (Italy). In order to plan an effective preservative
restoration procedure and; at the same time; to investigate the manufacturing techniques; the text
and the decorations on the magic scrolls were studied and characterized. A combined approach by
imaging and compositional techniques was used: Infrared Reflectography (IRR) for the preliminary
characterization of the graphic supports and the identification of the points to sample the chemical
measurements; and the spectroscopic analyses to clarify the hypothesized investigations and confirm
the chemical composition of the inks. In particular; Attenuated Total Reflectance-Fourier Transform
Infrared (ATR-FTIR) spectroscopy has provided information relating to the molecular composition
of inks and pigments; while a characterization of the constituent elements is obtained with the Ion
Beam Analysis (IBA). The ink composition proved to be consistent with data generally documented
in the literature and contributing to the expansion of knowledge on Ethiopian magic scrolls and
their production.
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by the Christians of Ethiopia as protection against disease and demonic possessions. They
generally consist of one or more bands of parchment joined together by a thin strip of
leather. They are still produced and used by the Ethiopian population but, since the 1970s,
their use has undergone a progressive decline [1].

The production of this kind of artifact has a centennial tradition probably born during
the reign of Aksum (I-VII b. C.). Despite the wide use of this type of artifacts over
time, no specimens dating back to the 18th century still exist today, probably because
they are produced for daily use, leading to their rapid deterioration and consequent loss.
The Christian tradition tends to attribute the scarcity of ancient manuscripts before the
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16th–17th century to the destruction of the Christian cultural heritage pursued in the first
half of the 16th century by the Emir Ahmad ibn Ibrahim al-Ghazi [2]. Indeed, wars and
devastation must have seriously affected the Ethiopian manuscript heritage, although the
extension of this destruction cannot be precisely determined.

These objects, similar to amulets, arise from the synthesis between ancient local pagan
beliefs and Christianity, the dominant monotheistic religion since the 4th century AD. They
report “magical-religious” texts with a protective or curative function for the owner. They
are not meant to be recited or read, but their effectiveness lies only in their writings, thanks
to which the scrolls acquire healing powers.

The text contained in these scrolls is usually drawn in red and black ink; it is generally
composed in the g
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at the beginning of the scroll) or other talismanic figures, including demons, imprisoned
devils, and human faces enclosed in stars or combinations of squares, with the recurring
“all-seeing eye” symbol. The spell written in a magic scroll is considered more effective
than a verbal spell precisely because the magical power is amplified by the presence of
these graphic elements and talismanic drawings [3].

The Ethiopian scrolls were produced for personal use, and that is why the owner’s
name is repeated within the text several times; during the manufacturing, even the parch-
ment strips that made them up were cut to a length corresponding to the height of the
owner to protect him “from head to toe”. In the case of a change of ownership, for example,
the old owner’s name was erased and replaced with the new one [4].

As a preliminary characterization before the restoration of a cultural heritage artifact,
the analysis of inks and pigments employed to write the handwritten text is of particular
interest. Identifying their composition is a fundamental step to reconstructing the history
of the investigated artifact and, as in the case of such unique artifacts, how they fit into
a traditional production process rooted and standardized over time. Furthermore, the
precise knowledge of the materials employed in the manufacturing process of the inves-
tigated artifact is also of fundamental help in defining the ideal conservation approach
for the object and, in case it requires restoration treatments, it allows for the design of a
targeted intervention effective in restoring the functionality of the object and respectful of
its composition and peculiarities.

In such a context, imaging techniques have proven to be a valid aid for the preliminary
characterization of the graphic media employed in the graphical and handwritten artifact,
giving general and introductory information on the investigated text and acting as a
guideline for subsequent punctual analyses. Through such techniques, it is possible to
group pigments and inks with similar spectral behaviors obtaining a rough indication of
their possible composition. On the other hand, the analysis of the elemental composition of
the writing media allows their more precise characterization confirming the indications
obtained with the preliminary imaging investigations or resolving any ambiguities due to,
for example, the use of mixtures of different inks or pigments.

This combined approach is more valuable in the case of handcrafted artifacts with
uncertain dates and placed in a traditional production framework that spans centuries, as in
the case of Ethiopian magic scrolls. The maintenance of the iconographic and paleographic
tradition unchanged for centuries, as well as the production technique of the parchment
support, makes their historical collation difficult since the ancient specimen often is similar
in appearance to the ones produced in the contemporary time.

In this work, we present the results of the different analysis performed on four
Ethiopian magic scrolls belonging to the Archivio storico della provincia di Cristo Re dei
Frati Minori dell’Emilia Romagna of Bologna (Italy) on their restoration in the Accademia Delle
Belle Arti of Bologna (Italy).

A preliminary characterization has been performed using near Infrared Reflectography
(IRR), thanks to which it has been possible to obtain an indication on the pigments and
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inks composition based on their response in the reflectograms. This first phase addressed
the choice of the subsequent techniques to obtain the most concrete result and choose the
points to carry out the measurements.

The spectroscopic analyses clarified the indications obtained with the preliminary
imaging investigation and were useful in resolving ambiguities due to the use of mixed
inks. In particular, through the Attenuated Total Reflectance-Fourier Transform Infrared
(ATR-FTIR) spectroscopy, it has been possible to obtain information related to the molecular
composition of the ink/pigments. Finally, the Ion Beam Analysis (IBA) has helped in the
elemental characterization of the investigated writing media.

2. Materials and Methods
2.1. The Ethiopian Magic Scrolls

The four Ethiopian scrolls under study belong to a small collection of ethnic materials
from Ethiopia and they are preserved in the Archivio storico della provincia di Cristo Re dei
Frati Minori dell’Emilia Romagna of Bologna (Italy). Three of the four finds, before being
transferred to the Archive, were kept in the Museo delle Grazie in Rimini where they had been
marked with the inventory numbers 642 (Figure 1a), 643 (Figure 1b), and 644 (Figure 1c). The
exact period in which the scrolls were part of the Museo delle Grazie is not known. However,
they were inventoried in 1969. The fourth scroll (Figure 1d), on the other hand, does not
seem to come from the Museo delle Grazie as it has no inventory number and has never been
mentioned in the lists of museum assets. In relation to it, a photocopy of an annotation
preserved together with the manuscripts was found; this would document the donation of
roll at the Bologna Archive in 2005. The photocopy bears the following inscription:

“Trovato in un/Tukul d’un ras
da/Vespignani Francesco/in Adis
Abeba nel 1937/Vespignani
Giovanni/Via S. Corbari 37/Forlì/Tel
68287/in archivio a BO/27/8/05”.

2.2. Imaging Techniques

The multispectral analysis is commonly employed for the study of techniques and
materials used and to determine the preservation state of paper or parchment artifacts. The
procedure is based on the evaluation of the response that the various materials offer when
irradiated by different light sources operating on wavelengths longer or shorter than the
visible band; on the other hand, the procedure is also based on the tonal rendering that
the same materials assume when observed with instruments sensitive to a wider spectrum
than the perception capabilities of the human eye.

IR Reflectography

The infrared images were acquired by means of a Sony Cyber-shot DSC-F828 camera
with 2/3” (3.9×) CCD sensor and a resolution of 8.0 megapixels. The camera is combined
with a Carl Zeiss 7.1–51.0 mm f/2.0–2.8. Different filters (Hoya R72 Infrared Filter, B+W
093 RG830 Filter, Schott RG1000 Filter) were applied in succession to the lens to determine
the variation of the behavior of the inks with the variation of the passing infrared band: the
evaluation is based on the different opacity or transparency infrared degrees depending
on the ink formulation, recognized using different filters. For this purpose we proceed
progressively, starting the acquisition without any optical filter and then increasing the
length filtering 100 nm per step, from 700 nm up to 1000 nm. The images were acquired in
TIFF format and processed using the Adobe Camera Raw and Adobe Photoshop software,
optimizing the contrasts to gain in both light and dark parts, maintaining the same settings
for all shots in order to obtain comparable results.
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2.3. ATR-FTIR Spectroscopy

Spectral analyses were performed using a Bruker ALPHA Platinum ATR spectrometer
provided with a single reflection diamond in Attenuated Total Reflectance (ATR) module;
the spectra were collected in the 4000–500 cm−1 range with a resolution of 4 cm−1; each
spectrum was the average of 64 measures. The surveys were carried out on the points
indicated in Figure 2. It is worth noticing that to maximize the information obtainable
from the ATR-FTIR spectroscopy, it was necessary to isolate, within the spectra, the bands
attributable exclusively to the inks/pigments. To achieve this, it was essential to subtract
the contribution of the underlying parchment support from the inks’ spectra: by elimi-
nating the bands relative to the parchment from the spectrum, it was possible to identify
the inks’ components.
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2.4. IBA

Ion beam analysis measurements were performed at the external beamline for cultural
heritage applications of the 3 MV Tandetron accelerator of INFN LABEC laboratory in
Florence [5]. Under the name of IBA techniques belong several analytical methods, of which
the following are employed at the cultural heritage beam line at LABEC: Particle-Induced
X-ray Emission (PIXE), Particle-Induced Gamma-ray Emission (PIGE), and Elastic Backscat-
tering Spectroscopy (EBS). These techniques are performed simultaneously, following the
so-called “Total-IBA” approach [6]. These analytical methods, employed together, allow a
comprehensive characterization of the elemental composition and depth distribution of
the analyzed material. The set-up at the end of the beamline includes two X-ray detectors
for PIXE technique: one is a 10 mm2 Silicon Drift Detector (SDD) with He flow for light
and major elements analysis, and the other is a 150 mm2 SDD, with a 450 µm thick Mylar
absorber for heavy and trace elements; one gamma-ray detector for PIGE technique, a 20%
relative efficiency HPGe detector with a mechanical cooler; and one particle detector for
EBS technique, a Si pin diode 10 × 10 mm2 active area, placed at 135◦ scattering angle and
mounted in an aluminum case, kept at 10−1 mbar pressure. Measurements were carried out
on the points marked in Figure 2 using a 3 MeV proton beam, 0.5 mm in diameter, extracted
into ambient pressure through a 200 nm thick Si3N4 window, using a beam current ranging
from 100 to 500 pA (chosen to keep dead time and pile up corrections negligible), and
lasted 300 seconds. The measurement set up is presented in Figure 3.

Quantitative results were then obtained by accurate charge-equivalent normalization
measuring the weak extracted beam currents using a rotating chopper [7]. Quantitative
IBA results based on the analysis of PIXE spectra were carried out using the GupixWin
software [8], whereas the analysis of the EBS spectra was achieved using the SIMNRA
software [9]. The analysis of PIGE spectra, typically used to determine light elements such
as Li, Be, B or F, did not reveal the presence of these elements.
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3. Results
3.1. Imaging Investigations: IRR

For a preliminary characterization of pigments and inks of all the scrolls, they have
been investigated through IRR. The techniques allow for having some indication of the
ink and pigment composition thanks to the possibility of evaluating their behavior in the
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near-infrared (NIR) spectral range. Some pigments can absorb light and be opaque in the
IRR image obtained, while others become transparent, revealing the underlying support.
Generally, black carbon-based pigments derived from combustion, such as bone black
or smoky black, tend to absorb light and intensify their black color in the NIR spectral
range [10]. In contrast, other pigments, such as red and yellow or metal-gall inks, are
transparent to IR [11,12].

Thanks to the capability of some kinds of pigments to be transparent to IR radiation,
this technique is often used to highlight the possible presence of a preparatory draw-
ing [13,14]. In this specific case, it has been employed to obtain preliminary information on
possible differences in the inks and pigments composition.

Generally, black carbon-based pigments derived from combustion, such as bone black
or smoky black, tend to absorb light and intensify their black color in the NIR spectral
range. Conversely, iron-gall or plant-derived compounds are more transparent at these
wavelengths, so they tend to disappear in the image. This phenomenon is less evident the
higher the percentage of ferrous component or insoluble pigment in the mixture.

Red and yellow inks, when subjected to infrared radiation, normally show a significant
drop in opacity, as they are frequently of vegetable origin.

As far as black inks are concerned, the evaluation of the images leads to a rough
definition of the carbonaceous material content. Black inks hardly appear in the form
of pure substance: generally, they are mixtures produced by the combination of liquids
carbonaceous or iron-gallic origin, present in different quantities on the basis of the cultural
background or the resource availability at the time of manufacture.

Therefore, the infrared images allow a comparison of the inked surfaces on the basis
of the degree of gray tone induced by the percentage of carbon.

The formulations characterized by a predominance of substances of iron-gallic or
vegetable origin tend to assume a certain transparency in infrared reflectography, more or
less marked on the basis of the variety and concentration of the components making up
the mixture.

At first, from the reflectographic images (Figures 4–6), it can be possible to notice that
the response of the red and yellow pigments of all four scrolls is the same behavior. They
are completely transparent to the IR radiation showing the underlying parchment.

Differently for the black inks and pigments, there are differences among the scrolls. It
is possible to notice that for the scroll without number and for scrolls no. 642 and no. 644,
we had a similar response with the persistence of the written text also in the reflectographic
image. At this range of wavelengths, it is impossible to affirm the ink’s nature since
the results obtained in the NIR range only suggest the possibility of the presence of a
carbon-based compound [15,16].

On the contrary, the image of scroll no. 643 (Figure 7) shows the different behavior
of both the ink of the writing and of the drawings that partially disappear, leaving the
underlying parchment visible and suggesting the possibility of the use of a mixed ink com-
position based on a metal-gall ink with some carbonaceous contamination. This hypothesis
is further suggested by the naked eye observation of its color, which results in a tendency to
be more brown than the others, reflecting a typical feature of metal-based inks [17].

The IRR technique did not allow for a certain attribution of the type of inks and their
composition, but it did allow us to definitely establish that scroll no. 643 has a black ink
with different spectral features than the other specimens. This behavior can be attributed
to a different chemical composition as well as, for example, to a different dilution of the
compound without giving any assurance on their nature.

Interestingly enough, thanks to the IR images, it was also possible to notice that the
red and black inks and pigments employed to write the text and trace the drawings on the
scroll had the same infrared response, thus confirming the documented Ethiopian practice
of using the same ink both for the written part and for the decorative apparatus [18].

The analysis therefore did not identify any discrepancies attributable to out-of-context
tampering, additions, or restoration work.
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Figure 5. Ethiopian scroll no. 644: (a) IR reflectographic image of the entire scroll; (b) magnification 
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Figure 6. Ethiopian scroll without number: (a) IR reflectographic image of the entire scroll;
(b) magnification of the IR reflectographic image and the corresponding visible one of part of
the decoration and the writing.
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3.2. ATR-FTIR Spectroscopy
3.2.1. Inkless Parchment

The ATR-FTIR analysis performed on an inkless area of scroll no. 642 (Figure 8)
showed the presence of peaks attributable to carbonates (1420 cm−1), silicates (1015, 913,
776, 664, 527, and 463 cm−1), and aluminates (823, 440 cm−1) [19]. The carbonates could be
linked to the residues of the use of calcitic substances, such as hosā [2], employed, according
to the Ethiopian tradition, for processing the flesh side of the parchment. Alumino-silicates
are instead probably due to kaolinite (Al2Si2O5(OH)4), the silicate mineral at the base
of kaolin. These compounds can be due to a specific step of the Ethiopian parchments’
preparation. In traditional manufacturing procedures, in fact, to prepare the surface for
writing, the parchment was treated with clay shards called madmat or madmas, aiming to
facilitate the ink’s absorption [2].

IR spectroscopy revealed the presence of gypsum (1611, 1098, 664, 602 cm−1) [19]
and organic material, i.e., a resin (bands at 1710, 1359, 1252, and 1161 cm−1) which
showed a certain degree of degradation highlighted by the presence of oxalate peaks
(1312 and 575 cm−1) [20].

3.2.2. Black Ink/Pigment

Numerous bands attributable to phenols have been detected in the scroll’s spectra.
Figure 8 shows the comparison among the black inks of scrolls no. 642, no. 643, no. 644
and without number, together with the attribution of the main bands. The bands attributed
to phenols are 1606–1593 (mixed with Arabic gum bands), 1484, 1363–1359, 913–907, 776
(combined with silicate vibrations), and 668 cm−1 [20,21]. Phenols, and more aromatic
substances in general, can be found indiscriminately both in carbonaceous inks and in
metal-gallic inks; therefore, the presence of this chemical compound does not allow us to
identify univocally whether it is one kind of ink rather than the other or, possibly, a mix of
the two [22–24].
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The bands at 1735–1727 cm−1 in scroll no. 642 and without number are indicative of the
effects of metal-gallic inks on parchment, which causes the oxidative hydrolysis of the pro-
teinaceous support [25]. The binding medium, identified as a gum, showed typical bands
at 1603–1593, 1417 (mixed with carbonates), 1073, and 1008–987 cm−1 [21]. Silicate bands
at 913–907, 776, 688–686, 519, and 459–456 cm−1 and carbonate bands at 1419–1413 and
876 cm−1 as previously described for the inkless parchment [19]. Carbonates’ bands could
also indicate carbonaceous inks [22]. The presence of oxalate bands at 1319–1316 cm−1

indicates gum degradation processes. The large sulphate band at 1108 cm−1 is caused by
using metal sulphates (iron, copper) and potash (potassium and aluminum sulphate) to
prepare metal-gallic inks [21,22]. As it is possible to see in Figure 9, in all the different
spectra the bands remain essentially the same, but those of scroll no. 643 show decid-
edly different intensities. The latter could indicate the presence of ink with a different
formulation, although based on very similar chemical components. In particular, bands
attributed to the gum (1603, 1073 cm−1) and its degradative products (i.e., oxalates) showed
the highest intensity, suggesting a higher binder content.
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Figure 9. ATR-FTIR spectra of the black inks on scrolls no. 642, no. 643, no. 644 and without number,
with the attribution of the main bands: to increase the readability of spectra, the attribution is reported
only once, usually in correspondence to the most intense peak (i.e., the 1603 cm−1 band of phenols is
written only for scroll no. 643).

3.2.3. Red Ink/Pigment

Numerous bands attributable to silicates (910–908, 778, 687, 527–522, and
462–459 cm−1) have been recorded in all the red inks/pigments of the investigated Ethiopian
scrolls (Figure 10). Silicates are a class of minerals known to be, together with iron oxides
(large band at 514 cm−1), among the main components of earths and ochres [10]. Accord-
ingly, an earthy origin can be determined for the pigments used for the red inks combined
with a rubber-based binder (bands at 1624, 1070, 1001–996 cm−1) [21].
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Figure 10. ATR-FTIR spectra of the red inks on scrolls no. 642, no. 643, no. 644 and without number,
with the attribution of the main bands: to increase the readability of spectra, the attribution is reported
only once, usually in correspondence to the most intense peak (i.e., the 996 cm−1 band of gum is
written only for scroll no. 642).

3.2.4. Yellow Ink/Pigment

The yellow pigment of the scroll without number presents several peaks (1260,
827, and 740 cm−1) attributable to a resinous material of vegetal origin, i.e., saponins
(Figure 11) [26]. The presence of intense bands attributable to silicates (912, 769, 520, and
464 cm−1), as previously described for the red ink, could highlight the presence of an
earth/ocre pigment [27].
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Also, in this case, a rubber-based binder is employed, as highlighted by the large band
at 1009 cm−1 [21].
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3.2.5. Brown Ink/Pigment

The brown ink of scroll no. 642 (Figure 12), such as the black inks, showed the presence
of bands attributable to phenols (1596, 1512, 1369, and 912 cm−1) [21]. Therefore, it is not
easy to establish whether it could be a carbonaceous ink or a metal-gall one. In this sense,
the higher intensity of carbonates’ bands at 1416 and 872 cm−1 compared to previous
samples may suggest that this ink formulation is mainly of carbonaceous origin [22]. The
presence of silicate bands (912, 767, 684, 520, and 461 cm−1) could also indicate the presence
of an earth-based pigment [27].
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3.3. IBA Analysis

Table 1 summarizes all the main elements found within the inks and pigments of the
investigated Ethiopian scrolls. In the following paragraphs, the composition of the writing
media and the relative attributions are discussed in detail.

Table 1. Elemental analysis of inks and pigments obtained by IBA.

Ethiopian Scroll Ink/Pigment Elements

Scroll without number

Parchment Ca, K, Fe, Cl, Si, (Cu), (Zn), (Br), (Hg)
Black Fe, Hg
Red Hg, Fe, S, (Ti)

Yellow Fe, Hg

Scroll no. 642

Parchment Ca, K, Fe, Br, Cl, (Cu), (Zn)
Black Ca, K, S, Fe, (Cu)
Red Ca, Fe

Brown Ca, Fe, K

Scroll no. 643

Parchment Ca, K, Fe, Cl, (Hg), Cr
Black Ca, K, Fe
Red Hg, S, Fe

Yellow Fe

Scroll no. 644
Parchment Ca, K, Fe, Cl

Black Ca, K, Fe, (Ti), (Zn), (Pb)
Red Hg, S, Ca, K, Fe
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3.3.1. Black Ink/Pigment

Black inks are characterized by the presence of calcium (Ca), sulfur (S), and potassium
(K), elements that may suggest the use of an organic compound. Nevertheless, in all four
scrolls iron (Fe) was also detected in variable amounts and may indicate the use of iron-gall
ink (Figure 13). Therefore, we are dealing with mixed carbonaceous/metal-gallic inks in all
four scrolls. These custom results to be attested in Ethiopia have been reported in the XRF
analysis of the codices belonging to the collection of the church of
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Figure 13. Comparison of PIXE spectra of the black inks on scrolls with no number, no. 642, and
no. 644 obtained with the large area SDD.

Moreover, the presence of potassium could be traced back to the use of a gummy
binder, more specifically, Arabic gum, in which the ink was usually dispersed to be used
for writing [2].

3.3.2. Red Ink/Pigment

The analysis on red inks of scrolls no. 643, no. 644, and of the scroll without number
(Figure 14) reveals a large presence of mercury (Hg) and sulfur (S) attributable to the use of
cinnabar or vermilion [29], also revealed by the quantitative analysis performed by PIXE
and EBS that confirmed the stoichiometry of HgS. The presence of iron (Fe) suggests the
possibility of a mixed compound with Fe-based materials such as earths or ochres (iron
oxides) pigments. Differently for scroll no. 642, the red ink/pigment is not characterized
by the presence of Hg but by quantities of Ca, even higher than the parchment itself. This
may suggest the use of an organic compound mixed with iron oxides.

3.3.3. Yellow Ink/Pigment

The yellow ink areas of the unnumbered scroll and no. 643 are characterized by the
presence of Fe (in lower quantities with respect to the red inks), probably linked to the use
of earths or ochres (Fe oxides/hydroxides) (Figure 15). The presence of mercury (Hg) could
be due, instead, to a contamination deriving from the migration of the red pigment during
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the rolling/unrolling phases. This is generally true for all measuring points, in fact it is also
revealed in the parchment. Similarly, Fe is also detected in the bare parchment (although
with much lower yield) and its presence is possibly due to material migration as happens
for Hg. It has to be noted, however, that it is common to detect Fe in parchments and its
presence is due to the preparation process of the parchment itself [18,30].
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Figure 14. On the left, PIXE spectra of the red ink of the scroll without number obtained with the two
SDDs, small and large area. On the right, EBS spectrum collected simultaneously, together with the
SIMNRA simulation. Here, the contribution of the different elements to the simulation is also shown,
and the distinction between carbon (C) and oxygen (O) in the parchment or in the ligand is shown. It
has to be noted that He is not present in the sample itself, but is a “parasitic” element common to EBS
spectra when measurements are performed in an external beam set-up under helium flow.
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3.3.4. Brown Ink/Pigment

The brown ink of the scroll no. 642 shows the presence of different elements (Ca, Fe,
K) from which, however, it is impossible to establish the pigment with certainty. It could be
an organic compound combined with earths or ochres.

4. Discussion

The combined approach of imaging and spectroscopic analysis employed in this work
has allowed us to characterize the composition of the original pigments and inks used and
to obtain further interesting information with respect to what is present in the literature.

The black inks probably have a mixed composition consisting of the union of car-
bonaceous pigments, probably carbon black, and metal-gallic inks. The use of mixed-
composition inks was quite common in that geographical area and was previously de-
scribed for Egyptian papyrus documents from the Byzantine period [24]. The ratio of these
two mixed components is different in the four scrolls. More specifically, scrolls no. 642,
no. 644, and the scroll without number can be recognized as a mainly carbon-based ink
since, in the mentioned cases, the IRR shows the strong persistence of the writing also in
the NIR spectral range. Nevertheless, the presence of Fe highlighted by IBA suggests the
possibility of using a mixed combination of the two kinds of inks.

On the other hand, scroll no. 643 seems to have a different composition of the mixture.
Its brownish color, typical for metal-gallic inks, and the response of the writing at the
IRR suggest the use of an opposite combination of the blend with a mainly metal-gall ink
composition with small percentages of carbon black.

Interestingly enough, the results obtained from the diagnostic analyses regarding the
black ink composition differ from what is stated in the literature that reports using carbon-
based ink (carbon black) as traditional in Ethiopia [2]. Nevertheless, numerous studies
carried out on various Ethiopian artifacts report as not unusual the employment of mixed
inks. It is worth mentioning here that the use of different analytical techniques was of
paramount importance in the characterization of carbon-based pigments and inks. In fact,
FTIR studies on this topic are quite limited: Tomasini et al. [31] found that pigments based
on graphite, lampblack, and charcoal give very poor IR spectra, while other pigments based
on the carbonization of organic materials (i.e., ivory of vine black) showed the intense band
of phosphate in the 1020–990 cm−1 spectral region, which unfortunately overlap with gum
IR absorption. Other pigments, such as bitumen and bistre, showed strong bands in the
1600–1570 and 870 cm−1 regions, which correspond to aromatic and carbonate vibrations,
respectively. Both bands are described in other studies [22,24] and may correspond to what
was observed in our samples (Figure 9).

The red inks and pigments of scrolls no. 643, no. 644, and of the scroll without number
are based on cinnabar/vermilion (IBA revealed the presence of Hg and S) while those of
scroll no. 642 were obtained from an organic compound. Furthermore, thanks to both
IBA and ATR-FTIR spectroscopy analyses, the presence of earths/ochres (as suggested
by the presence of silicates in the FTIR spectra and of Fe in the IBA analysis) has been
detected on the red pigments of all the scrolls. The infrared technique could not confirm
the presence of this pigment since it does not absorb in the investigated spectral range
(from 4000 to 400 cm−1).

Although cinnabar/vermilion has already been identified in some Ethiopian
manuscripts, traditional recipes do not mention it among the palette employed by the
artisans. This is probably because the presence of cinnabar mines in Ethiopia can be
excluded since the existence of this pigment would have made it an exporting country.
Still, no mention of this is found in the documentary sources [32]. Furthermore, recipes
for the production of vermilion (the synthesized version of cinnabar) have never been
attested in Ethiopia. The most plausible theory remains that this kind of pigment was
imported into Ethiopia after the eighteenth century; the artisan preparation of red pig-
ments that only involved the use of organic ingredients gradually fell into disuse and was
replaced by imported commercial red dyes. Therefore, the presence of cinnabar/vermilion
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inside the red inks of three of the four Ethiopian scrolls is consistent with what has just
been argued, while the use of organic compound on scroll no. 642 would be, instead,
a rarity. The presence of earths/ochres in the red inks is compatible with documented
Ethiopian customs [33].

The yellow ink of the scroll without number seems to be based on earth/ochre with
the addition of a plant-based resin well recognizable from the bands on the ATR-FTIR
spectra. The yellow ink of scroll no. 643 is probably an earth/ochre due to the presence of
Fe highlighted by the IBA. Considering that very few traditional recipes concerning the
production of yellow inks have come down to us, it is impossible to hypothesize the nature
of the resin used on this scroll.

The brown ink of scroll no. 642 could be an organic compound combined with an
earth/ochre. In this case, the lack of traditional recipes makes it challenging to compare
with the pigments used in Ethiopia.

The analyses determined that the inks’ binder is of the rubbery type, and is therefore
congruent with the binding substances included in the recipes [2].

Finally, the analyses carried out on the parchment supports of the scrolls confirmed
the production procedures of the parchments in Ethiopia described in the literature, in
particular the immersion in salt water prior to processing (presence of Cl), the application
of calcite powder in the skiving phase (presence of carbonates), and the use of kaolin to
prepare the parchment for writing (presence of alumina-silicates).

5. Conclusions

The complementarity of two fields such as scientific and historical-artistic studies is
essential in understanding this artifact as a cultural asset in all its aspects and to determine
the right approach to its conservation.

The research carried out here has made it possible to characterize the Ethiopian magic
scrolls as original parchment handicrafts about which much is not yet known.

The study of the typical features of these artistic objects linked to Ethiopian history,
religion, and ritual practices (superstitions and traditional spiritual seances), reveals infor-
mation about the civilization they belong to. The scientific analyses performed to complete
the research made it possible to investigate the chemical-physical characteristics of the
artifacts. This is fundamental for several aspects: (1) it helps in the reconstruction of the
techniques for making parchment artifacts according to the customs, technologies, and
availability of the civilization and the origin territory; (2) it allows us to identify the com-
position of the inks and pigments of the written/graphic text. Specifically, the acquisition
of this knowledge will make it possible to identify the most suitable cleaning, restoration,
and care methods for interventions on the four studied artifacts so that the best conserva-
tion state of the object and of the memory heritage it contains is guaranteed, beyond the
language barriers.

The studies carried out add an important element in the research concerning Ethiopian
artifacts; the large number of data collected can constitute fertile ground for future further
insights aimed at learning about the traditional productions of Ethiopia.

The presented research gave an important result also from the point of view of the
experimental approach to this case study. The use of imaging techniques alongside nuclear
investigation techniques is a valid scientific approach for a detailed surface and in-depth
study of the parchment artifacts. The procedure followed for the characterization of
the Ethiopian magic scrolls has taken advantage of the propensity for multidisciplinary
collaboration in the interest of the study of cultural heritage assets by combining the
capabilities of nuclear physics with those of materials science in favor of the humanities
and of the technologies for the conservation of artistic objects.
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