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Abstract—Virtualization is a key technology used in a wide
range of applications, from cloud computing to embedded sys-
tems. Over the last few years, mainstream computer architectures
were extended with hardware virtualization support, giving rise
to a set of virtualization technologies (e.g., Intel VT, Arm VE)
that are now proliferating in modern processors and SoCs. In
this article, we describe our work on hardware virtualization
support in the RISC-V CVA6 core. Our contribution is multifold
and encompasses architecture, microarchitecture, and design
space exploration. In particular, we highlight the design of a
set of microarchitectural enhancements (i.e., G-Stage Translation
Lookaside Buffer (GTLB), L2 TLB) to alleviate the virtualiza-
tion performance overhead. We also perform a Design Space
Exploration (DSE) and accompanying post-layout simulations
(based on 22nm FDX technology) to assess Performance, Power
,and Area (PPA). Further, we map design variants on an FPGA
platform (Genesys 2) to assess the functional performance-area
trade-off. Based on the DSE, we select an optimal design point for
the CVA6 with hardware virtualization support. For this optimal
hardware configuration, we collected functional performance
results by running the MiBench benchmark on Linux atop
Bao hypervisor for a single-core configuration. We observed a
performance speedup of up to 16% (approx. 12.5% on average)
compared with virtualization-aware non-optimized design at the
minimal cost of 0.78% in area and 0.33% in power. Finally, all
work described in this article is publicly available and open-
sourced for the community to further evaluate additional design
configurations and software stacks.

Index Terms—Virtualization, CVA6, Microarchitecture, TLB,
MMU, Design Space Exploration, Hypervisor, RISC-V.

I. INTRODUCTION

Virtualization is a technological enabler used on a large
spectrum of applications, ranging from cloud computing and
servers to mobiles and embedded systems [1]. As a funda-
mental cornerstone of cloud computing, virtualization provides
numerous advantages for workload management, data protec-
tion, and cost-/power-effectiveness [2]. On the other side of the
spectrum, the embedded and safety-critical systems industry
has resorted to virtualization as a fundamental approach to
address the market pressure to minimize size, weight, power,
and cost (SWaP-C), while guaranteeing temporal and spatial
isolation for certification (e.g., ISO26262) [3]–[5]. Due to the
proliferation of virtualization across multiple industries and
use cases, prominent players in the silicon industry started
to introduce hardware virtualization support in mainstream
computing architectures (e.g., Intel Virtualization Technology,
Arm Virtualization Extensions, respectively) [6], [7].

Recent advances in computing architectures have brought to
light a novel instruction set architecture (ISA) named RISC-

V [8]. RISC-V has recently reached the mark of 10+ billion
shipped cores [9]. It distinguishes itself from the classical
mainstream by providing a free and open standard ISA,
featuring a modular and highly customizable extension scheme
that allows it to scale from small microcontrollers up to
supercomputers [10]–[16]. The RISC-V privileged architecture
provides hardware support for virtualization by defining the
Hypervisor extension [17], ratified in Q4 2021.

Despite the Hypervisor extension ratification, as of this
writing, there is no RISC-V silicon with this extension on
the market1. There are open-source hypervisors with upstream
support for the Hypervisor extension, i.e., Bao [1], Xvisor [18],
KVM [19], and seL4 [20] (and work in progress in Xen [21]
and Jailhouse [22]). However, to the best of our knowledge,
there are just a few hardware implementations deployed on
FPGA, which include the Rocket chip [23] and NOEL-V [24]
(and soon SHAKTI and Chromite [25]). Notwithstanding, no
existing work has (i) focused on understanding and enhancing
the microarchitecture for virtualization and (ii) performed a
design space exploration (DSE) and accompanying power,
performance, area (PPA) analysis.

This work describes the architectural and microarchitectural
support for virtualization in an open-source RISC-V CVA6-
based [14] (64-bit) SoC. At the architectural level, the imple-
mentation is compliant with the Hypervisor extension (v1.0)
[17] and includes the implementation of the RISC-V timer
(Sstc) extension [26] as well. At the microarchitectural level,
we modified the vanilla CVA6 microarchitecture to support
the Hypervisor extension and proposed a set of additional
extensions/enhancements to reduce the hardware virtualization
overhead: (i) a dedicated second stage Translation Lookaside
Buffer (TLB) coupled to the Page Table Walker (PTW) (i.e.,
G-Stage TLB (GTLB) in our lingo), and (ii) a second level
TLB (L2 TLB). We also present and discuss a comprehensive
design space exploration on the microarchitecture. We first
evaluate 23 (out of 288) hardware designs deployed on FPGA
(Genesys 2) and assess the impact on functional performance
(execution cycles) and hardware. Then, we elect 7 designs
and analyze them in depth with post-layout simulations of
implementations in 22nm FDX technology.

We ran the MiBench (automotive subset) benchmarks
for the DSE evaluation to assess functional performance.
The virtualization-aware, non-optimized CVA6 implementa-

1SiFive, Ventana, and StarFive have announced RISC-V CPU designs with
Hypervisor extension support, but we are not aware of any silicon available
on the market yet.
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tion served as our baseline configuration. The software setup
encompassed a single Linux Virtual Machine (VM) running
atop Bao hypervisor for a single-core design. We measured
the performance speedup of the hosted Linux VM relative to
the baseline configuration. Results from the DSE exploration
demonstrated that the proposed microarchitectural extensions
could achieve a functional performance speedup up to 19%
(e.g., for the susanc small benchmark); however, in some
cases at the cost of a non-negligible increase in area and
power. Thus, results from the PPA analysis show that: (i)
the Sstc extension has negligible impact on power and area;
(iii) the GTLB increases the overall area in less than 1%;
and (iv) the L2 TLB introduces a non-negligible 8% increase
in area in some configurations. As a representative, well-
balanced configuration, we selected the CVA6 design with Sstc
support and a GTLB with 8 entries. For this specific hardware
configuration, we observed a performance speedup of up to
16% (approx. 12.5% on average) at the cost of 0.78% in area
and 0.33% in power. To the best of our knowledge, this paper
reports the first public work on a complete DSE evaluation
and PPA analysis for a virtualization-enhanced RISC-V core.

To summarize, with this work, we make the following
contributions. Firstly, we provide hardware virtualization sup-
port for the CVA6 core, which was completely absent in
the vanilla implementation. In particular, we implement the
RISC-V Hypervisor extension (v1.0) and design a set of
(virtualization-oriented) microarchitectural enhancements to
the Nested Memory Management Unit (Section III). To the
best of our knowledge, no work or study describes and dis-
cusses microarchitectural extensions to improve the hardware
virtualization support in a RISC-V core. Second, we perform
a DSE encompassing dozens of design configurations. This
DSE includes trade-offs on parameters from three different
microarchitectural components (L1 TLB, GTLB, L2 TLB)
and respective impact on functional performance and hardware
costs (Section IV). Finally, we conduct post-layout simulations
on a few elected design configurations to assess a PPA analysis
(Section V). All contributions described in this manuscript
are open source 2 and available to the RISC-V community to
foster collaboration and enable contributions with further ex-
tensions, optimizations, and testing/verification activities. The
Hypervisor extension is now going towards formal upstream
into the CVA6 main repository3. Our goal is to democratize
virtualization for the next-generation CVA6-based SoCs.

II. BACKGROUND

This section covers the background related to RISC-V
technology (ISA, extensions, and cores) and virtualization. To
improve readability, we also provide a table of abbreviations
and terminologies used throughout the article (see Table I).

A. Virtualization Technology
Virtualization is the de facto technology that consolidates

and isolates multiple non-related software stacks onto the same
hardware platform by partitioning and multiplexing hardware

2https://github.com/minho-pulp/cva6/
3https://github.com/minho-pulp/cva6/tree/feat/hyp-upstream
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Fig. 1. RISC-V privilege levels: machine (M), hypervisor-extended supervisor
(HS), virtual supervisor (VS), and virtual user (VU).

resources (e.g., CPUs, memory) between multiple virtual ma-
chines. The virtual machine monitor (VMM) or hypervisor is
the software layer that implements virtualization. The software
executing in the VM is referred to as a guest, typically an
operating system (OS), i.e., guest OS.

B. RISC-V Privileged Specification
The RISC-V privileged instruction set architecture (ISA)

[17] divides its execution model into 3 privilege levels: (i)
machine mode (M-mode) is the most privileged level, hosting
the firmware which implements the supervisor binary inter-
face (SBI) (e.g., OpenSBI); (ii) supervisor mode (S-Mode)
runs Unix type operating systems (OSes) that require virtual
memory management; (iii) user mode (U-Mode) executes
userland applications. The modularity offered by the RISC-V
ISA seamlessly allows for implementations at distinct design
points, ranging from small embedded platforms with just M-
mode support to fully blown server class systems with M/S/U.

C. RISC-V Virtualization
Unlike other mainstream ISAs, the RISC-V privileged ar-

chitecture was designed from the initial conception to be clas-
sically virtualizable [27]. So although the ISA, per se, allows
the straightforward implementation of hypervisors resorting,
for example, to classic virtualization techniques (e.g., trap-and-
emulation and shadow page tables), it is well understood that
such techniques incur a prohibitive performance penalty and
cannot cope with current embedded real-time virtualization
requirements (e.g., interrupt latency) [23]. Thus, to increase
virtualization efficiency, the RISC-V privileged architecture
specification introduced hardware support for virtualization
through the (optional) Hypervisor extension [17]. The follow-
ing paragraphs provide a high-level overview of the RISC-V
Hypervisor extension specification.
Privilege Levels. As depicted in Figure 1, the RISC-V Hy-
pervisor extension execution model follows an orthogonal
design where the supervisor mode (S-mode) is modified to an
hypervisor-extended supervisor mode (HS-mode) well-suited
to host both type-1 or type-2 hypervisors4. Additionally, two
new privileged modes are added and can be leveraged to run

4The main difference between type-1 (or baremetal) and type-2 (or hosted)
hypervisors is that a type-1 hypervisor runs directly on the hardware (e.g.,
Xen) while a type-2 hypervisor runs atop an operating system (e.g., VMware).
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TABLE I
TABLE OF ABBREVIATIONS, RISC-V TERMINOLOGIES AND RISC-V CONTROL STATUS REGISTERS AND INSTRUCTIONS.

Name Definition

Abbreviations
PTW Page Table Walker. The PTW is responsible for transversing the page table and converting a virtual address into a physical address.
DSE Design Space Exploration. Functional evaluation carried out for multiple FPGA design configurations.
PPA Power, Performance, Area. Post-layout silicon power, performance, and area analysis.
VM Virtual Machine. The execution environment (e.g., OS or application) running atop a hypervisor.

Nested-MMU Nested Memory Management Unit. Using two translation stages, convert a guest’s virtual address into a host’s physical address.
The first is controlled by the guest OS and the second by the hypervisor.

TLB Translation Lookaside Buffer. Microarchitectural element used to cache translations from virtual addresses to physical addresses.
VS-Mode Virtual Supervisor Mode. Privilege mode in RISC-V, where a guest OS runs when virtualized.
HS-Mode Hypervisor-extended Supervisor Mode. Privilege mode in RISC-V, where the hypervisor runs.
GTLB G-stage Translation Lookaside Buffer. TLB that stores G-stage only translation, i.e., guest physical addresses into host physical addresses.

RISC-V Terminologies
CSR Control Status Registers. RISC-V CPU control registers.
VS-Stage RISC-V terminology for a first translation stage. Converts guest virtual addresses into guest physical addresses.
G-Stage RISC-V terminology for a second translation stage. Converts guest physical addresses into host physical addresses.
ASID Address Space Identifier. Processes have a unique identifier used to tag translations on the MMU (e.g., on TLB entries).
VMID Virtual Machine Space Identifier. Guest virtual machines have a unique identifier used to tag translations on the MMU.
PTE Page Table Entry. Specific entry of a page table used to convert virtual addresses into physical addresses.

RISC-V Control Status Registers and Instructions
stimecmp Supervisor Time Comparator Register. Generates timer interrupts at HS/S-mode. Only available if the RISC-V Sstc extension is implemented.
vstap Virtual Supervisor Guest Address Translation and Protection Register. Controls the VS-stage address translation and protection.
vstimecmp Virtual Supervisor Time Comparator Register. Generates timer interrupts at VS-mode. Only available if the RISC-V Sstc extension is implemented.
hgeie and hgeip Hypervisor Guest External Enable and Pending Registers. Deliver interrupts directly to the guest if the interrupt controller supports virtualization.
hvencfg Hypervisor Virtual Environment Control Register. Controls hypervisor access (enabled or disabled) to optional platform-specific extensions (e.g., Sstc extension).
hgatp Hypervisor Guest Address Translation and Protection Register. G-stage root table pointer and respective translation-specific configuration fields.
menvcfg Machine Virtual Environment Control Register. Controls firmware access (enabled or disabled) to optional platform-specific extensions (e.g., Sstc extension).

hfence Hypervisor Fence Instruction. Flush cached translations on TLBs and other related structures.
The hfence.vvma flushes VS-Stage and G-Stage translations. The hfence.gvma flushes only G-Stage translations.

the guest OS at virtual supervisor mode (VS-mode) and virtual
user mode (VU-mode).

Two-stage Address Translation. The Hypervisor extension
also defines a second translation stage (G-stage in RISC-V
lingo) to virtualize the guest memory by translating guest-
physical addresses into host-physical addresses. The HS-mode
operates like S-mode but with additional hypervisor registers
and instructions to control the VM execution and G-stage
translation. For instance, the hgatp register holds the G-stage
root table pointer and translation-specific configuration fields.

Hypervisor Control and Status Registers (CSRs). Each VM
running in VS-mode has its own control and status registers
(CSRs) that are shadow copies of the S-mode CSRs. These
registers can be used to determine the guest execution state
and perform VM switches. To control the virtualization state,
a specific flag called virtualization mode (V bit) is used. When
V=1, the guest is executing in VS-mode or VU-mode, normal
S-mode CSRs accesses are actually accessing the VS-mode
CSRs, and the G-stage translation is active. Otherwise, if
V=0, normal S-mode CSRs are active, and the G-stage is
disabled. To ease guest-related exception trap handling, there
are guest-specific traps, e.g., guest page faults, VS-level illegal
exceptions, and VS-level ecalls (a.k.a. hypercalls).

Hypervisor Instructions. The Hypervisor extension defines a
set of hypervisor-related instructions to increase the virtualiza-
tion efficiency. These instructions encompass: (i) hypervisor
load/store instructions used to access guest memory with
the exact translation and permissions rights (RWX) as the
guest; and (ii) hypervisor fence instructions synchronization
mechanisms to flush guest-related cached translation structures
(e.g., TLBs) during context switching operations.

D. Nested Memory Management Unit (Nested-MMU)

The MMU is a hardware component responsible for translat-
ing virtual memory references to physical ones while enforcing
memory access permissions. The OS controls the MMU by
assigning virtual address space to each process and managing
the MMU translation structures to translate virtual addresses
into physical addresses correctly. On a virtualized system,
the MMU provides another layer of translation and protec-
tion controlled by the hypervisor. In this case, the MMU
can translate from guest-virtual addresses to guest-physical
addresses and from guest-physical addresses into host-physical
addresses. This new feature is referred to as nested-MMU.
The RISC-V ISA supports the nested-MMU through a new
stage of translation that converts guest-physical addresses into
host-physical addresses, denoted G-stage. The guest VM takes
control over the first stage of translation (VS-stage in RISC-V
lingo), while the hypervisor assumes control over the second
one (G-stage). Originally, the RISC-V privileged specification
defines that a virtual address is converted into a physical
address by traversing a multi-level radix-tree table using one
of four different topologies: (i) Sv32 for 32 virtual address
spaces with a 2-level hierarchy tree; (ii) Sv39 for 39-bit virtual
address spaces with a 3-level tree; (iii) Sv48 for 48-bit VAS
and 4-level tree; and (iv) Sv57 for 57-bit virtual address spaces
and 5-level tree. Each level holds a pointer to the following
table (non-leaf entry) or the final translation (leaf entry). This
pointer and permissions are stored in a 64-bit (RV64) or 32-
bit (RV32) width page table entry (PTE). Note that RISC-V
splits the virtual address into 4KiB page sizes, but since each
level can either be a leaf or non-leaf, it supports superpages
to reduce the TLB pressure, e.g., Sv39 supports 4KiB, 2MiB,
and 1GiB page sizes.
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PTW, TLBs, and CSRs) are highlighted in blue. Adapted from [14].

E. RISC-V ”stimecmp/vstimecmp” Extension (Sstc)
The RISC-V Sstc extension [26] aims to enhance supervisor

mode with its timer interrupt facility, thus eliminating the large
overheads for emulating S/HS-mode timers and timer interrupt
generation up in M-mode. The Sstc extension also adds a
similar facility to the Hypervisor extension for VS-mode.
To enable direct control over timer interrupts in the HS/S-
mode and VS-mode, the Sstc encompasses two additional
comparators: (i) stimecmp register to generate S/HS-mode
timer interrupts and (ii) vstimecmp register to generate VS-
mode timer interrupts. Whenever the value of the system
clock time counter register is greater than the value on the
comparators, a timer interrupt is generated. For a complete
overview of the RISC-V timer architecture and a discussion on
why the classic RISC-V timer specification incurs a significant
performance penalty, we refer the interested reader to [23].

F. CVA6
CVA6 is an application class RISC-V core that implements

both the RV64 and RV32 versions of RISC-V ISA [14]. The
core fully supports the 3 privilege execution modes M/S/U-
modes and provides hardware support for memory virtualiza-
tion by implementing a MMU, making it suitable for running a
fully-fledged OS such as Linux. Recent additions also include
a energy-efficient Vector Unit co-processor [28]. Internally,
the CVA6 microarchitecture encompasses a 6-stage pipeline,
single issue, with an out-of-order execution stage and 8 PMP
entries. The MMU has separate TLBs for data and instructions
and the PTW implements the Sv39 and Sv32 translation modes
as defined by the privileged specification [17].

III. CVA6 ”FROM SCRATCH” VIRTUALIZATION SUPPORT

This section reports our work in adding hardware support
for virtualization in the CVA6 core (compliant with the RISC-
V Hypervisor extension v1.0). To the best of our knowledge,
this work is the first initiative to add hardware virtualization
support in the CVA6 core. The following section divides
into seven logical subsections: (i) Subsection III-A, III-B,
III-C and III-D describes the modifications/additions to CVA6
microarchitecture enabling the Hypervisor extension support,
specifically to the core registers and the MMU subsystem;

(ii) Subsection III-E and III-F presents the microarchitectural
enhancements designed in the MMU subsystem to increase
virtualization efficiency; and (iii) Subsection III-G describes
how we extend the CVA6 timer with the standard RISC-V Sstc
extension to improve the timer management infrastructure.
Figure 2 illustrates a high-level overview of the modifica-
tions/additions performed in the CVA6 microarchitecture.

A. Hypervisor and Virtual Supervisor Execution Modes
As previously described (refer to Section II-C), the Hy-

pervisor extension specification extends the S-mode into the
HS-mode and adds two extra orthogonal execution modes,
denoted VS-mode and VU-mode. To add support for these
new execution modes, we have extended/modified some of
the CVA6 core functional blocks, in particular, the CSR and
Decode modules. As illustrated by Figure 2, the hardware
virtualization architecture logic encompasses five building
blocks: (i) VS-mode and HS-mode CSRs access logic and
permission checks; (ii) exceptions and interrupts triggering and
delegation; (iii) trap entry and exit; (iv) hypervisor instructions
decoding and execution; and (v) nested-MMU translation
logic. The CSR module was extended to implement the first
three building blocks that comprise the hardware virtualization
logic, specifically: (i) HS-mode and VS-mode CSRs access
logic (read/write operations); (ii) HS and VS execution mode
trap entry and return logic; and (iii) a fraction of the excep-
tion/interrupt triggering and delegation logic from M-mode
to HS-mode and/or to VS/VU-mode (e.g., reading/writing
to vsatp CSR triggers an exception in VS-mode when not
allowed by the hypervisor). The Decode module was modified
to implement hypervisor instructions decoding (e.g., hyper-
visor load/store instructions and memory-management fence
instructions) and all VS-mode related instructions execution
access exception triggering.

We refer readers to Table II, which presents a summary
of the features that were fully and partially implemented. We
have implemented all mandatory features of the ratified spec-
ification (v1.0); however, we still left some optional features
as partially implemented due to the dependency on upcoming
or newer extensions. For example, hvencfg bits depend on
Zicbom [29] (cache block management operations); hgeie and
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TABLE II
HYPERVISOR EXTENSION FEATURES IMPLEMENTED IN THE CVA6 CORE:

 FULLY-IMPLEMENTED; G# PARTIALLY IMPLEMENTED.

CSRs

hstatus/mstatus  
hideleg/hedeleg/mideleg  
hvip/hip/hie/mip/mie  
hgeip/hgeie G#
hcounteren  
htimedelta  
henvcfg G#
mtval2/htval  
mtinst/htinst  
hgapt G#
vsstatus/vsip/vsie/vstvec/vsscratch
vsepc/vscause/vstval/vsatp  

Intructions hlv/hlvx/hsv  
hfence.vvma/gvma  

Exceptions & Interrupts

Environment call from VS-mode  
Instruction/Load/Store guest-page fault  
Virtual instruction  
Virtual Supervisor sw/timer/external
interrupts  

Supervisor guest external interrupt  

hgeip depends on the Advanced Interrupt Architecture (AIA)
[30]; and hgatp depends on virtual address spaces not currently
supported in the vanilla CVA6.

B. Hypervisor Load/Store Instructions
The hypervisor load/store instructions (i.e., HLV, HSV, and

HLVX) provide a mechanism for the hypervisor to access
the guest memory while subject to the exact translation
and permission checks as in VS-mode or VU-mode. These
instructions change the translation settings at the instruction
granularity level, forcing a complete swap of privilege level
and translation applied at every hypervisor load/store instruc-
tion execution. The implementation encompasses the addition
of a signal (identified as hyp ld/st in Figure 2) to the CVA6
pipeline that travels from the decoding to the load/store unit in
the execute stage. This signal is then fed into the MMU that
performs (i) all necessary context switches (i.e., enables the
hgatp and vstap CSRs), (ii) enables the virtualization mode,
and (iii) changes execution mode.

C. Nested Page-Table Walker
One of the major functional blocks of an MMU is the

PTW. Fundamentally, the PTW is responsible for partitioning
a virtual address accordingly to the specific topology and
scheme (e.g., Sv39) and then translating it into a physical ad-
dress using the memory page tables structures. The Hypervisor
extension specifies a new translation stage (G-stage) used to
translate guest-physical addresses into host-physical addresses.
Our implementation supports Bare translation mode (no G-
stage) and Sv39x4, which defines a 41-bit width maximum
guest physical address space. As of this writing, the CVA6
only supported the Sv39 scheme for the 64-bit core, so we
extended the implementation to support the Sv39x4.

We extended the existing finite state machine (FSM) used
to translate virtual addresses to physical addresses and added
only a new control state to keep track of the current translation
stage and assist the context switching between VS-Stage and
G-Stage translations. With the G-stage in situ, it is mandatory
to translate: (i) the resulting guest-physical address from the

VS-Stage translation and (ii) all memory accesses made during
the VS-Stage translation walk. To accomplish that, we identify
three stages of translation that can occur during a PTW
iteration: (i) VS-Stage - the PTW current state is translating
a guest-virtual address into a guest-physical address; (ii) G-
Stage Intermed - the PTW current state is translating memory
access made from the VS-Stage during the walk to host-
physical address; and (iii) G-Stage Final - the PTW current
state is translating the final output address from VS-Stage
into a host-physical address. It is worth noting that if MMU
is configured in Bare mode for the G-stage translation, we
perform a standard S/VS-Stage translation. Once the nested
walk completes, the PTW updates the TLB with the final PTE
from VS-stage and G-stage, alongside the current Address
Space Identifier (ASID) and the Virtual-Machine Identifier
(VMID). VMID tags each translation to a specific VM. One
implemented optimization consists of storing the translation
page size (i.e., 4KiB, 2MiB, and 1GiB) for both VS- and G-
stages into the same TLB entry and permissions access bits
for each stage.

D. Virtualization-aware TLBs (vTLB)
The CVA6 MMU microarchitecture has two small, fully

associative TLB: data (L1 DTLB) and instructions (L1 ITLB).
Both TLBs support a maximum of 16 entries and fully
implement the flush instructions, i.e., sfence, including filtering
by ASID and virtual address. To support nested translation,
we modified the L1 DTLB and ITLB microarchitecture to
support two translation stages, including access permissions
and VMIDs. Each TLB entry holds both VS-Stage and G-
Stage PTE and respective permissions. The lookup logic is
performed using the merged final translation size from both
stages, i.e., if the VS-stage is a 4KiB and the G-stage is a
2MiB translation, the final translation would be a 4KiB. This
is probably one of the major drawbacks of having both the VS-
stage and G-stage stored together. For instance, hypervisors
supporting superpages/hugepages use the 2MiB page size to
optimize the MMU performance. Although this significantly
reduces the PTW walk time, if the guest uses a 4KiB page size,
the TLB lookup would not benefit from superpages since the
translation would be stored as a 4KiB page size translation.
A possible alternative would be having separated TLBs for
each stage. We argue that this solution would have three major
drawbacks: (i) negative impact on performance as it would be
possible to search in G-Stage TLB after the VS-Stage TLB
lookup (i.e., increase the TLB hit time penalty by a factor
of 2); (i) less hardware reuse, i.e., the G-Stage TLB is only
used when a guest is running and G-stage is active; and (iii)
more impact on the area and energy, the CVA6 TLBs are fully
combinational circuits with a significant impact on the area,
energy, and timing. For all the above reasons, we decided to
keep the VS-stage and G-stage translations in a single TLB
entry.. Finally, the TLB also supports VMID tags allowing
hypervisors to perform a more efficient TLB management
using per-VMID flushes and avoiding full TLB flush on a
VM context switch. Finally, the TLB also allows flushes
by guest physical address, i.e., hypervisor fence instructions
(hfence.vvma/gvma) are fully supported.
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E. Microarchitectural extension #1 - GTLB
A full nested table walks for the Sv39 scheme can take

up to 15 memory accesses, five times more than a standard
S-stage translation. This additional burden imposes a higher
TLB miss penalty, resulting in a (measured) overhead of
up to 13% on the functional performance (execution cycles)
(comparing the baseline virtualization implementation with
the vanilla CVA6). To mitigate this, we have extended the
CVA6 microarchitecture with a GTLB in the nested-PTW
module to store intermediate GPA to HPA translations, i.e.,
VS-Stage non-leaf PTE guest physical address to host physical
addresses translation. Figure 3 illustrates the modifications
required to integrate the GTLB in the MMU microarchitecture.
The GTLB structure aims at accelerating VS-stage translation
by skipping each nested translation during the VS-stage page
table walk. Figure 4 presents a 4KiB page size translation
process featuring a GTLB in the PTW. Without the GTLB,
each time the guest forms the non-leaf physical address PTE
pointer during the walk, it needs: (i) to translate it via G-
stage, (ii) read the next level PTE value from memory, and
(iii) resume the VS-stage translation. When using superpages
(2MiB or 1GiB), there are fewer translation walks, reducing
the performance penalty. With a simple hardware structure, it
is possible to mitigate such overheads by keeping those G-
stage translations cached while avoiding unnecessary cache
pollution and nondeterministic memory accesses.
GTLB microarchitecture. The GTLB follows a fully-
associative design with support for all Sv39 superpage sizes
(4KiB, 2MiB, and 1GiB). Each entry is searched in par-
allel during the TLB lookup, and each translation can be
stored on any TLB entry. The replacement policy evicts

the least recently used entry using a pseudo-least recently
used (PLRU) algorithm already implemented on the CVA6
L1 TLBs. The maximum number of entries that GTLB can
hold simultaneously ranges from 8 to 16. The flush circuit
fully supports hypervisor fence instruction (HFENCE.GVMA),
including filtering flushed TLB entries by VMIDs and virtual
address. It is worth mentioning that the GTLB implementation
reused the already-in-place L1 TLB design and modified it to
store only G-stage-related translations. We map TLB entries
to flip-flops due to their reduced number.

F. Microarchitectural extension #2 - L2 TLB
Currently, the vanilla CVA6 MMU features only a small

separate L1 instruction and data TLBs, shared by guests and
the hypervisor. The TLB can merge VS and G stage transla-
tions in one single entry, where the stored translation page size
must be the minimum of the two stages. This may improve
hardware reuse and save some additional search cycles, as
no separated TLBs for each stage are required. However, as
explained in Subsection III-D, one major drawback of this
approach is that if the hypervisor or the guest uses superpages,
the TLB would not benefit from them if the pages differ in size,
i.e., there would be less TLB coverage than expected. This
would result in more TLB misses and page-table walks and,
naturally, a significant impact on the overall performance. To
deal with the increased TLB coverage and TLB miss penalty
caused by G-stage overhead, as well as with the inefficiency
arising from the mismatch between translation sizes, we have
augmented the CVA6 MMU with a large set-associative private
unified L2 TLB as illustrated in Figure 3.
L2 TLB microarchitecture. The TLB stores each translation
size in different structures to simplify the look-up logic. The
L2 TLB follows a set-associative design with translation tags
and data stored in SRAMs. As implemented in the GTLB, the
replacement policy is also PLRU. To speed up the search logic,
the L2 TLB look-ups and the PTW execute in parallel, thus not
affecting the worst-case L1 TLB miss penalty and optimizing
the L2 miss penalty. Moreover, the L2 TLB performs searches
in parallel for each page size (4KiB or 2MIB), i.e., each page
size translation is stored on different hardware structures with
independent control and storage units. SFENCE and HFENCE
instructions are supported, but a flush signal will flush all TLB
entries, i.e., no filtering by VMIDs or ASIDs. We implemented
the L2 TLB controller using a 4 state FSM. First, in Flush
state, the logic encompasses walking through the entire TLB
and invalidating all TLB entries. Next, in the Idle state, the
FSM waits for a valid request or update signal from the PTW
module. Third, in the Read state, the logic performs a read
and tag comparison on the TLB set entries. If there is a hit
during the look-up, it updates the correct translation and hit
signals to the PTW. If there is no look-up hit, the FSM goes
to the IDLE state and waits for a new request. Finally, in the
Update state, we update the TLB upon a PTW update.

G. Sstc Extension
Timer registers are exposed as MMIO registers (mtime);

however, the Sstc specification defines that stimecmp and
vstimecmp are hart CSRs. Thus, we exposed the time value
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TABLE III
DESIGN SPACE EXPLORATION CONFIGURATIONS.

ConfigurationModule Parameter #1 #2 #3
L1 TLB size entries 16 32 64
GTLB size entries 8 16 —

page size 4KiB 2MiB 4KiB+2MiB
associativity 4 8 —
size entries
for 4KiB 128 256 —L2 TLB
size entries
for 2MiB 32 64 —

SSTC status enabled disable —

to each hart via connection to the CLINT. We also added
the ability to enable and disable this extension at S/HS-
mode and VS-mode via menvcfg.STCE and henvcfg.STCE bits,
respectively. For example, when menvcfg.stce is 0, an S-mode
access to stimecmp will trigger an illegal instruction. The same
happens for VS-mode, when henvcfg.stce is 0 (throwing a
virtual illegal instruction exception). The Sstc extension does
not break legacy timer implementations, as software that does
not support the Sstc extension can still use the standard SBI
interface to set up a timer.

IV. DESIGN SPACE EXPLORATION: EVALUATION

In this section, we discuss the conducted design space
exploration (DSE) evaluation. The system under evaluation,
the DSE configuration, the followed methodology, as well as
benchmarks and metrics are described below. Each subsection
then focuses in assessing the functional performance speedup
per the configuration of each specific module: (i) L1 TLB
(Section IV-A); (ii) GTLB (Section IV-B); (iii) L2 TLB
(Section IV-C); and (iv) Sstc (Section IV-D).
System and Tools. We ran the experiments on a CVA6 single-
core SoC featuring a 32KiB DCache and 16KiB ICache,
targeting the Genesys2 FPGA at 100MHz. The software stack
encompasses the (i) OpenSBI (version 1.0) (ii) Bao hypervisor
(version 0.1), and Linux (version 5.17). We compiled Bao
using SiFive GCC version 10.1.0 for riscv64 baremetal targets
and OpenSBI and Linux using GCC version 11.1.0 for riscv64
Linux targets. We used Vivado version 2020.2 to synthesize
the design and assess the impact on FPGA hardware resources.
DSE Configurations. The DSE configurations are summa-
rized in Table III. For each module, we selected the parameters
we wanted to explore and their respective configurations. For
instance, for the L1 TLB we fixed the number of entries as
the design parameter and 16, 32, and 64 as possible config-
urations. Taking all modules, parameters, and configurations
into consideration, it is possible to achieve up to 288 different
combinations. Due to the existing limitations in terms of time
and space, we carefully selected and evaluated 23 out of these
288 configurations.
Methodology. We focus the DSE evaluation on functional
performance (execution cycles). We collected 1000 samples
and computed the average of 95 percentile values to remove
any outliers caused by some sporadic Linux interference. We
normalized the results to the reference baseline execution
(higher values translate to higher performance speedup) and
added the absolute execution time on top of the baseline

bar. Our baseline hardware implementation corresponds to a
system with the CVA6 with hardware virtualization support
but without the proposed microarchitectural extensions (e.g.,
GTLB, L2 TLB). We have also collected the post-synthesis
hardware utilization; however, we omit the results due to lack
of space (although we may occasionally refer to them during
the discussion of the results in this section).

Benchmarks. We used the Mibench Embedded Benchmark
Suite. The Mibench is an embedded application benchmark
widely used in mixed-critically systems to assess the per-
formance [23], [31]. The Mibench incorporates a set of 35
application benchmarks grouped into six categories, targeting
different embedded market segments. We focus our evaluation
on the automotive subset. The automotive suite encompasses
3 high memory-intensive benchmarks (qsort, susan corners
and susan edges) that exercise many components across the
memory hierarchy (e.g. MMU, cache, and memory controller).
To complement our evaluation, we ran San Diego Vision
Benchmark [32] in the selected designs for the PPA analysis.
San Diego Vision is a computer vision benchmark widely
used to evaluate embedded and mixed-criticality systems [33],
[34]. It runs a full range of vision applications (e.g., motion
tracking (tracking)) using multiple datasets with different
sizes. Instructions to run our experiments with Mibench and
San Diego Vision can be found here5.

A. L1 TLB

In this subsection, we evaluate the functional performance
for a different number of L1 TLB entries, i.e., 16, 32, and 64.

L1 TLB Setup. To assess the L1 TLB functional performance
speedup, we ran the full set of benchmarks for three different
setups: (i) Linux virtual/hosted execution for the baseline cva6-
16 (baseline); (ii) Linux virtual/hosted execution for the cva6-
32 (hosted-32); and (iii) Linux virtual/hosted execution for the
cva6-64 (hosted-64).

L1 TLB Performance Speedup. Figure 5 shows the assessed
results. All results are normalized to the baseline execution.
Several conclusions can be drawn. Firstly, as expected, the
hosted-64 is the best-case scenario with an average perfor-
mance speedup increase of 3.6%. We can observe a maxi-
mum speedup of 7% in the susanc (small) benchmark and a
minimum speedup of 2% in the bitcount (large) benchmark.
However, although not explicitly shown in this paper, to
achieve these results there is an associated impact of 50%
increase in the FPGA resources. We expected these results
because the L1 TLB is a fully-associative TLB implemented
as a full combinational circuit, and the CVA6 design is not
optimized for this particular FPGA architecture. Secondly,
the hosted-32 configuration increases the performance by a
minimum of 1% (e.g., basicmath large) and a maximum of 4%
(e.g., susanc small), at a cost of about 15%-17% in the area
(FPGA). Finally, we can conclude that increasing the CVA6 L1
TLB size to 32 entries presents the most reasonable trade-off
between functional performance speedup and hardware cost.

5https://github.com/ninolomata/bao-cva6-guide/tree/cva6-evaluation
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B. GTLB
In this subsection, we assess the GTLB impact on functional

performance. We evaluate this for a different number of GTLB
entries (8 and 16) and L1 TLB entries (16 and 32).
GTLB Setup. To assess the GTLB functional performance
speedup, we ran the full set of benchmarks for seven distinct
setups: (i) Linux virtual/hosted execution for the baseline cva6-
16 (baseline); (ii) Linux virtual/hosted execution for the cva6-
32 (hosted-32); (iii) Linux virtual/hosted execution for the
cva6-16-gtlb-8 (hosted-16-gtlb-8); (iv) Linux virtual/hosted
execution for the cva6-32-gtlb-8 (hosted-32-gtlb-8); (v) Linux
virtual/hosted execution for the cva6-16-gtlb-16 (hosted-16-
gtlb-16); and (vi) Linux virtual/hosted execution for the cva6-
32-gtlb-16 (hosted-32-gtlb-16).
GTLB Performance Speedup. Mibench results are depicted
in Figure 6. We normalized results to baseline execution.
We highlight a set of takeaways. Firstly, the hosted-16-gtlb-8
and hosted-16-gtlb-16 scenarios have similar results across all
benchmarks with an average percentage performance speedup
of about 2%; therefore, there is no significant improvement
from configuring the GTLB with 16 entries over 8 when the
L1 TLB has 16 entries. Secondly, the hosted-32-gtlb-8 setup
presents the best performance, i.e., a maximum performance
increase of about 7% for the susanc (small) benchmark;
however, at a non-negligible overall cost of 20% in the
hardware resources. Surprisingly, the hosted execution with
32 entries and a GTLB with 16 entries (hosted-32-gtlb-16)
perform slightly worst compared with an 8 entries GTLB
(hosted-32-gtlb-8). We have also collected microarchitectural
hardware events on the CVA6. We noticed a slight increase in
data cache misses for the hosted-32-gtlb-16 compared to the
hosted-32-gtlb-8 of roughly 10% in some benchmarks (e.g.,
susanc-large), which explain why the GTLB with 16 entries
performs worse than the GTLB with 8 entries. For instance,
for the susane (large) benchmark the hosted-16-gtlb-8 setup

TABLE IV
L2 TLB DESIGN SPACE EXPLORATION CONFIGURATIONS.

Configuration L1 TLB GTLB L2 TLB
cva6-16 16 entries — —
cva6-16-gtlb8 16 entries 8 entries —
cva6-16-l2-1 16 entries 8 entries 4KiB - 128, 4-ways
cva6-16-l2-2 16 entries 8 entries 2MiB - 32, 4-ways

cva6-16-l2-3 16 entries 8 entries 4KiB - 128, 4-ways
2MiB - 32, 4-ways

cva6-32-gtlb8 16 entries 8 entries —
cva6-32-l2-1 32 entries 8 entries 4KiB - 128, 4-ways
cva6-32-l2-2 32 entries 8 entries 4KiB - 128, 8-ways
cva6-32-l2-3 32 entries 8 entries 4KiB - 256, 4-ways
cva6-32-l2-4 32 entries 8 entries 4KiB - 256, 8-ways
cva6-32-l2-5 32 entries 8 entries 2MiB - 32, 4-ways
cva6-32-l2-6 32 entries 8 entries 2MiB - 32, 8-ways
cva6-32-l2-7 32 entries 8 entries 2MiB - 64, 4-ways
cva6-32-l2-8 32 entries 8 entries 2MiB - 64, 8-ways

cva6-32-l2-9 32 entries 8 entries 4KiB - 128, 4-ways
2MiB - 32, 4-ways

cva6-32-l2-10 32 entries 8 entries 4KiB - 256, 4-ways
2MiB - 64, 4-ways

achieves a 6% performance increase while the hosted-16-gtlb-
16 only 5%. Finally, the hosted-32 achieves a performance
increase in line with hosted-16-gtlb8 and hosted-16-gtlb16
configurations.

C. L2 TLB
In this subsection, we assess the L2 TLB impact on func-

tional performance. We conduct several experiments focusing
on two main L2 TLB configuration parameters: (i) multi-
page size support (4KiB or 2MiB or both) and (ii) TLB
associativity. Furthermore, we also evaluated the L2 TLB
impact in combination with different L1 TLB entries (16 and
32) and the GTLB with 8 entries. Table IV summarizes the
design configurations.
Multi-page Size Support Setup. To assess the performance
speedup for the L2 TLB multi-page size, we have carried
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Fig. 8. Mibench results for L2 TLB associativity design space exploration evaluation.

out a set of experiments to measure the impact of: (i)
4KiB page size (configurations cva6-16-l2-1,cva6-32-l2-1);
(ii) 2MiB page size (configurations cva6-16-l2-2, cva6-32-l2-
5); (iii) both 4KiB and 2MiB page sizes (configurations cva6-
16-l2-3, cva6-32-l2-9); and (iv) increase the L1 TLB capacity.
For each configuration, we run the Mibench benchmarks for
nine different scenarios: (i) Linux virtual/hosted execution for
the baseline cva6-l1-16 (baseline); (ii) Linux native execution
for the cva6-16 (bare); (ii) Linux virtual/hosted execution for
the cva6-16-gtlb8 (hosted-16-gtlb8); (iii) Linux virtual/hosted
execution for the cva6-16-l2-1 (hosted-16-l2-1); (iv) Linux
virtual/hosted execution for the cva6-16-l2-2 (hosted-16-l2-
2); (v) Linux virtual/hosted execution for the cva6-16-l2-
3 (hosted-16-l2-3); (vi) Linux virtual/hosted execution for
the cva6-32-gtlb8 (hosted-32-gtlb8); (vii) Linux virtual/hosted
execution for the cva6-32-l2-1 (hosted-32-l2-1); (viii) Linux
virtual/hosted execution for the cva6-32-l2-5 (hosted-32-l2-5);
and (ix) Linux virtual/hosted execution for the cva6-32-l2-9
(hosted-32-l2-9).
Multi-page Size Support Performance. Mibench results are
depicted in Figure 7. All results were normalized to baseline
execution. Based on Figure 7, we can extract several conclu-
sions. First, configurations that support only 2MiB page size,
i.e., hosted-16-l2-2 and hosted-16-l2-5, present little or almost
no performance improvement compared with the hardware
configurations including only the GTLB (i.e., hosted-16-gtlb-
8 and hosted-16-gtlb-8). Second, supporting 4KiB page sizes
causes a noticeable performance speedup for the L1 TLB
with 16 entries, especially in memory-intensive benchmarks,
such as qsort (small), susanc (small) and susane (small). The
main reason that justifies this improvement lies in the fact
that Bao is configured to use 2MiB superpages; however,
the Linux VM uses mostly 4KiB page size, i.e., most of

the translations are 4KiB. From a different perspective, we
observe similar results for the hosted-16-l2-1 and hosted-32-
gtlb-8, with few exceptions in some benchmarks (e.g., susane
(large), susanc (large) and qsort (large)). Moreover, for an
L1 TLB configured with 32 entries, the average performance
increase is roughly equal in less memory-intensive benchmarks
(e.g. basicmath and bitcount). This is explained by the reduced
number of L1 misses, due to its larger capacity which leads
to fewer requests to the L2 TLB. Finally, we observe minimal
speedup improvements on several benchmarks (e.g., susans)
when supporting both 4KiB and 2MiB (hosted-16-l2-3 and
hosted-32-l2-9).

TLB associativity Setup. To evaluate the performance
speedup for the L2 TLB associativity, we select eight de-
signs from previous experiments and modified the following
parameters: (i) the number of 4KiB entries (128 or 256) and
2MiB (32 or 64) entries for the L2 TLB; and (ii) the L2 TLB
associativity, by configuring the L2 TLB in the 4-way or 8-
way scheme. For each configuration, we have run the selected
benchmarks for ten configurations: (i) Linux virtual/hosted
execution for the baseline cva6-l1-16 (baseline); (ii) Linux
virtual/hosted execution for the cva6-32 (hosted-32); (iii)
Linux virtual/hosted execution for the cva6-32-l2-1 (hosted-
32-l2-1); (iv) Linux virtual/hosted execution for the cva6-32-
l2-2 (hosted-32-l2-2); (v) Linux virtual/hosted execution for
the cva6-32-l2-3 (hosted-32-l2-3); (vi) Linux virtual/hosted
execution for the cva6-32-l2-4 (hosted-32-l2-4); (vii) Linux
virtual/hosted execution for the cva6-32-l2-5 (hosted-32-l2-
5); (viii) Linux virtual/hosted execution for the cva6-32-l2-6
(hosted-32-l2-6); (ix) Linux virtual/hosted execution for the
cva6-32-l2-7 (hosted-32-l2-7); and (x) Linux virtual/hosted
execution for the cva6-32-l2-7 (hosted-32-l2-7).
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Fig. 9. Mibench results for Sstc extension design space exploration evaluation.

Fig. 10. Summary of MiBench functional performance results for selected configurations.

TABLE V
SSTC DESIGN SPACE EXPLORATION CONFIGURATIONS.

Configuration L1 TLB GTLB L2 TLB SSTC
cva6-sstc 16 — — enabled
cva6-sstc-gtlb8 16 8 — enabled

cva6-max-power 16 8 4KiB - 128, 4-ways
2MiB - 32, 4-ways enabled

TLB associativity Performance. The results in Figure 8
demonstrate that there is no significant improvement in modi-
fying the number of sets and ways in 2MiB page size config-
urations (i.e., hosted-32-l2-5 to hosted-32-l2-8). Additionally,
we found that: (i) increasing the associativity from 4 to 8 or
doubling the capacity in low memory-intensive benchmarks
(e.g., bitcount) had little impact on functional performance;
and (ii) memory-intensive benchmarks (e.g., susanc (small))
normaly present a speedup when increasing the number of en-
tries for the same associativity (although with a larger standard
deviation). For instance, in the susanc (small) benchmark, we
observer a performance speedup from 6% to 7% when the
page support was 4KiB with 128 and 256 capacity organized
into a 4-way per set (hosted-32-l2-1 and hosted-32-l2-3).

D. Sstc Extension
In this subsection, we assess the Sstc extension impact on

performance. We assess the Sstc performance speedup for a
few configurations exercised in the former subsections. Table
V summarizes the design configurations.
Sstc Extension Setup. To assess the Sstc extension perfor-
mance speedup, we ran the full set of benchmarks for four
different setups: (i) Linux virtual/hosted execution for the
baseline cva6-16 (baseline); (ii) Linux virtual/hosted execu-
tion for cva6-sstc (hosted-16-sstc); (iii) Linux virtual/hosted
execution for cva6-gtlb8-sstc (hosted-16-gtlb8-sstc); and (iv)

Linux virtual/hosted execution for cva6-max-power (hosted-
max-power-sstc).
Sstc Extension Performance. The results depicted in Figure 9
show that for the hosted-16-sstc scenario, there is a significant
performance speedup. For example, in the memory-intensive
qsort benchmark, the performance speedup is 10.5%. Timer
virtualization is a major cause of pressure on the MMU subsys-
tem due to the frequent transitions between the Hypervisor and
Guest. The ”hosted-max-power” scenario performs the best,
with an average performance increase of 12.6%, ranging from
a minimum of 10% in the bitcount benchmark to a maximum
of 19% in memory-intensive benchmarks such as the susanc.
Finally, in less memory-intensive benchmarks, e.g., basicmath
(large) and bitcount (large), the hosted-16-gtlb8-sstc scenario
performs similarly to the hosted-max-power scenario, but with
significantly less impact on hardware resources. For example,
in the basicmath (large) benchmark, there is a negligible
difference of 0.5 % comparing the hosted-16-gtlb8-sstc with
the hosted-max-power scenario.

E. Designs for PPA Analysis Selection
We selected six configurations for the PPA analysis (see

Table VI) based on the functional performance setup results
summarized in Figure 10. We also ran San Diego Vision
Benchmark to evaluate the selected designs with different
workloads.
San Diego Vision Workloads Results. We ran the San Diego
Vision Benchmark for the configurations elected for the PPA
analysis. The results depicted in Figure 11 are in line with
the results collected for the Mibench benchmark (Figure 10).
First, for the h-16 scenario, there is an average performance
speedup of 10%. Second, the h-32 outperforms h-16-gtlb-8 in
some benchmarks with few exceptions. For instance, for the
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Fig. 11. San Diego Vision Benchmark functional performance results for PPA analysis selected configurations.

Fig. 12. Baseline CVA6 layout 0.75mmx0.65mm

disparity qcif, there is a slight difference of 2%. Third, h-
16-gtlb-8 has reasonable results with an average performance
increase of about 12% (maximum of 14% and minimum of
10%). Finally, for the h-gtlb-8-l2-0, h-gtlb-8-l2-1, and h-gtlb-
8-l2-2 configurations, the performance is identical, with a
pattern ranging a maximum of 16% and a minimum of 11%.

V. PHYSICAL IMPLEMENTATION
A. Methodology

Based on the functional performance results discussed in
Section IV and summarized in Figure 10, we select six
configurations to compare with the baseline implementation
of CVA6 with hardware virtualization support. Table VI lists
the hardware configurations under study. We implemented
these configurations in 22 nm FDX technology from Global
Foundries down to ready-for-silicon layout to reliably estimate
their operating frequency, power, and area.

To support the physical implementation and the PPA analy-
sis, we used the following tools: (i) Synopsys Design Compiler
2019.03 to perform the physical synthesis; (ii) Cadence In-
novus 2020.12 for the place & route; (iii) Synopsys PrimeTime
2020.09 for the power analysis - extracting value change dump
(VCD) traces on the post layout; and (iv) Siemens Questasim
10.7b to design the parasitics annotated netlist. Figure 12
shows the layout of CVA6, featuring an area smaller than
0.5mm2.

B. Results
We fix the target frequency to 800MHz in the worst corner

(SSG corner at 0.72 V, -40/125 °C). All configurations manage
to reach the target frequency. We then compare the area and
power consumption while running a dense 16x16 FP matrix

SSTC I/DTLB 8-entries 4k L2 2MB L2
support #entries GTLB TLB TLB

0-vanilla x 16 x x x
1-h-16 ✓ 16 x x x
2-h-32 ✓ 32 x x x

3-h-gtlb-8 ✓ 16 ✓ x x
4-h-gtlb-8-l2-0 ✓ 16 ✓ ✓ x
5-h-gtlb-8-l2-1 ✓ 16 ✓ x ✓
6-h-gtlb-8-l2-2 ✓ 16 ✓ ✓ ✓

TABLE VI
7 SELECTED CONFIGURATIONS FOR PPA ANALYSIS IN GF22NM

multiplication at 800MHz with warmed-up caches (TT corner,
25 °C). Leveraging the extracted power measurements and
the functional performance on the Mibench benchmarks, we
further obtain the relative energy efficiency.

Figure 13 depicts the PPA results. Figure 13(a) shows that
the Sstc extension has negligible impact on the area. In fact, as
expected, the MMU is the microarchitectural component with
a higher impact on power and area. Figure 13(b) highlights
the MMU area comparison. The configuration with 32 entries
doubles the ITLB and DTLB area, while the other configura-
tions have little to no impact on the ITLB and DTLB; they, at
most, add the GTLB and the L2-TLB modules on top of the
existing MMU configuration. Figure 13(c) shows the measured
power consumption. We observe that increasing the number of
L1 TLB entries from 16 to 32 (2-h-32) increases the power by
31%, while the other configurations impact less than 5% on
power compared with the vanilla CVA6. Figure 14 shows the
relative energy efficiency on the MiBench benchmarks. The
second configuration (2-h-32) is less energy efficient than the
baseline since the performance gain (≤ 15%) is smaller than
the power increase (≥ 30%). It is therefore excluded in the
graph analysis. On the other hand, all the other configurations
increase the energy efficiency up to 16%.

Figure 13(d) plots the measured power consumption of
the energy-efficient configurations against the average perfor-
mance improvement on the Mibench benchmarks. The SSTC
extension alone brings an average performance improvement
of around 10% with a negligible power increase. At the same
time, the explored MMU configurations can offer a clean
trade-off between performance and power. The most expensive
configuration can provide an extra performance of 4% gain for
a 4.47% power increase. Lastly, the hardware configuration
including the Sstc support and a GTLB with 8 entries (3-h-
16-gtlb-8), is the most energy-efficient one, with the highest
ratio between performance and power increase.

In conclusion, we can argue that the hardware configuration
with Sstc support and a GTLB with 8 entries (3-h-16-gtlb-8)
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Fig. 13. Area and Power results

Fig. 14. Energy efficiency results.

is the optimal design point since we can achieve a functional
performance speedup of up to 16% (approx. 12.5% on average)
at the cost of 0.78% in area and 0.33% in power.

VI. DISCUSSION

Performance Evaluation. We carried out an extensive func-
tional performance evaluation for multiple FPGA design con-
figurations in a single-core environment. As part of future
work, we plan and encourage the evaluation of additional
configurations and software stacks. Possible directions include
(i) experimenting with other hypervisors like XVisor [18] in
different configurations (e.g., having two guests running in a
single core); (ii) running other commercial benchmarks like
SPEC17; and (iii) shifting to multi-core environments, e.g.,
available in frameworks such as OpenPiton [35].
System-level Virtualization. The RISC-V ISA has reached
a new state of maturity, and some of its previously ex-
isting gaps [23] (e.g., no standard interrupt controller with
interrupt virtualization support) are already addressed. The
Advanced Interrupt Architecture (AIA) [30] specification has
been ratified, and it provides preliminary support for inter-
rupt virtualization using Message Signaled Interrupts (MSI).
Hypervisors can leverage the AIA to reduce interrupt latency
to guests and improve overall performance. As part of our
ongoing efforts, we are working on providing an open-source
reference implementation of the AIA IPs. The RISC-V I/O
memory management unit (IOMMU) 6 is also now ratified.
Fundamentally, the IOMMU protects memory accesses from
DMA-capable devices while guaranteeing isolation between
VMs and the hypervisor. For instance, in Bao, all devices

6https://github.com/riscv-non-isa/riscv-iommu

are assigned in a one-to-one scheme to a single guest using
pass-through device mechanisms, which means Bao entirely
relies on the IOMMU to do this. As part of our ongoing
efforts, we are working on providing open-source reference
implementations of the AIA IPs and the IOMMU IP.

Memory Subsystems Improvements. From an MMU mi-
croarchitectural point of view, there is ample room for im-
provement. We demonstrated that the CVA6 memory sub-
system is the major cause of performance degradation, and
further improvements are of utmost importance. For instance,
we could redesign the CVA6 MMU to support TLB coalescing
by augmenting the PTE to support NAPOT pages (Snapot
extension). Although we have accelerated the PTW with
dedicated TLB for the second stage, a few memory accesses
to the memory hierarchy are still needed, i.e., side-effects are
still expected at the cache level, and memory bandwidth at the
system interconnect. One could explore using a PTE cache to
store PTE entries close to the PTW and thus reduce the number
of memory accesses and cache pollution. From the platform
standpoint, RISC-V rich environment offers extensions that
can benefit virtualized environments. We already discussed
the standard cache management instructions, i.e., CMOs, de-
fined in the Zicbom and Zicboz extensions. Hypervisors like
Bao depend upon such instructions to implement partitioning
mechanisms such as cache coloring, which otherwise would
have to flush caches using firmware ecalls. Finally, this work
targeted a single-core platform with no Last-Level of Cache
(LLC). Hence, the effectiveness of such mechanisms is yet
to be proved in a multi-core environment where inter-core
interference is visible throughout the memory hierarchy. An
all-new class of security challenges is present, e.g., timing
side-channels [36].
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TABLE VII
CVA6 ALIKE RISC-V CORES WITH HYPERVISOR EXTENSION SUPPORT FEATURES: ✓- SUPPORTED; X - NOT SUPPORTED; AND ? - NO INFORMATION

AVAILABLE.

Processor Pipeline Priv.
Hyp. SSTC 2D-MMU L1 Cache L1 TLB L2 TLB PTW

Opts Status

Rocket 5-stage
in-order v0.6 X SV39x4 32 KiB,

I/DCache

set-assoc. 4KiB I/DTLB
or

full-assoc. superpages I/DTLB,
4-entries (configurable)

dir.-mapped, (configurable size) PTE
Cache Done

NOEL-V
7-stage

dual-issue
in-order

v0.6 ✓
SV32x2
SV39x4

32 KiB
I/DCache

I/DTLB,
(configurable) X hTLB Done

Chromite 6-stage
in-order v1.0 ?

SV32x4
SV39x4
SV48x4
SV57x4

32 KiB
I/DCache

set-assoc. split I/DTLB,
(configurable page sizes support)

or
full-assoc. I/DTLB, ?-entries (def. 4)

X X WIP

Shaktii
C Class

5-stage
in-order v1.0 ?

SV32x4
SV39x4
SV48x4

16 KiB
I/DCache

fully assoc. L1 I/DTLB,
4-entries X X WIP

CVA6 6-stage
in-order v1.0 ✓ SV39x4

32 KiB
DCache,
16KiB
ICache

full-assoc. I/DTLB,
4-entries

set assoc. 4KiB 128-256 entries, 4-8 ways
or/and

set assoc. 2MiB 32-64 entries, 4-8 ways
GTLB Done

VII. RELATED WORK

The RISC-V hypervisor extension is a relatively new addi-
tion to the privileged architecture of the RISC-V ISA, ratified
as of December 2021. Notwithstanding, from a hardware
perspective, there are already a few open-source and com-
mercial RISC-V cores with hardware virtualization support (or
ongoing support): (i) the open-source Rocket core [37]; (ii) the
space-grade NOEL-V [38], [39], from Cobham Gaisler; (iii)
the commercial SiFive P270, P500, and P600 series; (iv) the
commercial Ventana Veryon V1; (v) the commercial Dubhe
from StarFive; (vi) the open-source Chromite from InCore
Semiconductors; and (vii) the open-source Shakti core from
IIT Madras.

Table VII summarizes some information about the open-
source cores, focusing on their microarchitectural and archi-
tectural features relevant to virtualization. Table VII shows that
RISC-V cores with full support for the hypervisor extension
(e.g., the Rocket core and NOEL-V) are only compliant with
version 0.6 of the specification. The work described in this
paper is already fully compliant with ratified version 1.0.
Regarding the microarchitecture: (i) the Rocket core has some
general MMU optimizations (e.g., PTE cache and L2 TLB),
non of which are special targeting virtualization (like our
GTLB); (ii) Chromite and Shaktii have no MMU optimizations
for virtualization (and their support for virtualization is still in
progress); and (iii) NOEL-V has a dedicated hypervisor TLB
(hTLB). From a Cache hierarchy point of view, all cores have
identical sizes of L1 Cache, except the CVA6 ICache, which
is smaller (16KiB).

In terms of functional performance, our prior work on the
Rocket Core [23] concluded an average of 2% performance
overhead due to the hardware virtualization support. Findings
in this work are in line with the ones presented in [23]
(however, with a higher penalty in performance due to the
area-energy focus of the microarchitecture of the CVA6).
Notwithstanding, we were able to optimize and extend the
microarchitecture to significantly improve performance at a
fraction of area and power. Results in terms of performance
are not available for other cores, i.e., NOEL-C, Chromite, and
Shaktii. From an energy and area breakdown perspective, none

of these cores have made a complete public PPA evaluation.
NOEL-V only reported a 5% area increase for adding the
hypervisor extension.

A large body of literature also covers techniques to optimize
the memory subsystem. Some focus on optimizing the TLB
[40]–[48], while others aim at optimizing the PTW [49], [50].
For instance, in [50], authors proposed a dedicated TLB on the
PTW to skip the second translation stage and reduce the num-
ber of walk iterations. Our proposal for the GTLB structure
is similar. Nevertheless, to the best of our knowledge, this is
the first work to present a design space exploration evaluation
and PPA analysis for MMU microarchitecture enhancements
in the context of virtualization in RISC-V, fully supported by
a publicly accessible open-source design 7.

VIII. CONCLUSION
This article reports our work on hardware virtualization

support in the RISC-V CVA6 core. We start by describing
the baseline extension to the vanilla CVA6 to support virtual-
ization and then focus on the design of a set of enhancements
to the nested MMU. We first designed a dedicated G-Stage
TLB to speedup the nested-PTW on TLB Miss. Then, we
proposed an L2 TLB with multi-page size support (4KiB
and 2MiB) and configurable size. We carried out a design
space exploration evaluation on an FPGA platform to assess
the impact on functional performance (execution cycles) and
hardware. Then, based on the DSE evaluation, we elected a
few hardware configurations and performed a PPA analysis
based on 22nm FDX technology. Our analysis demonstrated
several design points on the performance, power, and area
trade-off. We were able to achieve a performance speedup of
up to 19% but at the cost of a 10% area increase. We selected
an optimal design configuration where we observed an average
performance speedup of 12.5% at a fraction of the area and
power, i.e., 0.78% and 0.33%, respectively.
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