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Introduction: 3D multicellular spheroids are fundamental in vitro tools for studying in vivo tissues. Volume is the main feature 

used for evaluating the drug/treatment effects, but several other features can be estimated even from a simple 2D image. For 

high-content screening analysis, the bottleneck is the segmentation stage, which is essential for detecting the spheroids in the 

images and then proceeding to the feature extraction stage for performing morphotypic analysis. Problem: Today, several 

tools are available for extracting morphological features from spheroid images, but all of them have pros and cons and there is 

not a general validated solution. Thanks to new deep learning models, it is possible to standardize the process and adapt the 

analysis to big data. Novelty: Starting from the first version of AnaSP, an open-source software suitable for estimating several 

morphological features of 3D spheroids, we implemented a new module for automatically segmenting 2D brightfield images 

of spheroids by exploiting convolutional neural networks. Results: Several deep learning segmentation models (i.e. VVG16, 

VGG19, ResNet18, ResNet50) have been trained and compared. All of them obtained very interesting results and ResNet18 

ranked as the best-performing. Conclusions: A network based on an 18-layer deep residual architecture (ResNet-18) has been 

integrated into AnaSP, releasing AnaSP 2.0, a version of the tool optimized for high-content screening analysis. The source 

code, standalone versions, user manual, sample images, video tutorial, and further documentation are freely available at: 

https://sourceforge.net/p/anasp. 

Keywords: High-content screening; Widefield microscopy; Cancer 3D models; Deep Learning; Morphological Analysis. 

1. Introduction

In vivo life is never flat and today we are fully immersed in the three-dimensional (3D) era of 

modeling [1]. Biology and medicine, like other research fields, are following this trend [2]. 3D 

multicellular -oids (e.g. organoids, spheroids [3]) have become essential in vitro tools for instance for 

anti-cancer drug screening and toxicology studies in preclinical oncology [4]. Today, multicellular 

spheroids (i.e. multicellular aggregates producing their extracellular matrix and having a nearly 

spherical shape [5]) can be created from different cell lines with different technologies according to 

different pros and cons [6]. Once produced, they are then widely used in several high-content 

screening (HCS) analyses [7], in particular image-based high-throughput experiments [8]. Volume is 
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the main feature used for instance for evaluating the anti-cancer drug/treatment effects [9], but 

several other features can be estimated even from a simple 2D image acquired with standard 

widefield microscopes [10]. For instance, AMIDA [11], AnaSP [12], INSIDIA [13], PCaAnalyser 

[14], SpheroidJ [15], SpheroidSizer [16], and TASI [17] are tools freely available for extracting 

morphological features of spheroids. The segmentation stage is the bottleneck in this process, as it is 

required for detecting spheroids in images and extracting features in order to perform wide 

morphotypic analysis in a limited amount of time [18]. 

An answer to the segmentation problem can be provided by artificial neural networks (ANNs) 

specifically trained for segmenting brightfield images of spheroids. An ANN is defined as a 

computational processing system that is significantly inspired by how biological nervous systems 

(such as the human brain) work [19]. ANNs are primarily composed of a large number of 

interconnected computational nodes (referred to as “neurons”), which collaborate in a distributed 

method to collectively learn from input and optimize their ultimate output [20]. The input, typically a 

multidimensional vector, is loaded into the input layer, and it is deeply distributed to several hidden 

layers (today’s common term “deep” refers to the number of layers of these networks, at least two). 

These hidden layers make decisions based on the prior layers, and then weigh how a stochastic 

change inside itself degrades or improves the final output. This is known as the learning process [21]. 

The training is typically executed using supervised deep learning techniques, which means that the 

learning goes through pre-labeled inputs that serve as targets. One of the most common types of 

ANNs is the convolutional neural network (CNN) [22]. CNNs are similar to regular ANNs: they are 

made up of “neurons” that optimize themselves through learning. Each neuron continues to accept 

input and conduct an operation (such as a scalar product followed by a nonlinear function), which is 

the same foundation of many ANNs. The entire network still expresses a single perceptual scoring 

function from the input vectors to the final output of the class score (the weight). The final layer 

includes loss functions related to the classes, as well as all of the standard tips and tricks created for 

classic ANNs that still apply. The only notable difference between CNNs and traditional ANNs is 

that CNNs are primarily used in the field of pattern recognition within images. This allows the 

encoding of image-specific features into the architecture, making the network more suited for image-

focused tasks while further reducing the parameters required to set up the model [23].  

Today, several deep-learning CNN architectures are available for automatically detecting the objects 

of interest in the background and segmenting them. Thanks to these deep learning models, it is 

possible to optimize the segmentation process for adapting the analysis to big data [24]. Between 

them, the Visual Geometry Group (VGG) network [25] and Residual Network (ResNet) [26] are 

really promising. VGG is a standard deep CNN architecture with multiple layers. For instance, the 

popular VGG16 and VGG19 consist of 16 and 19 convolutional layers, respectively [27]. ResNet is a 

deep learning model designed to solve the so-called ”vanishing/exploding gradients” problem, which 

hampers convergence from the beginning [28]. Similarly to VGG16 and VGG19, the popular 

ResNet18 and ResNet50 consist of 18 and 50 convolutional layers, respectively. 

In this work, firstly, four different deep CNNs were implemented using the MATLAB Deep Learning 

Toolbox (©, The MathWorks, Inc., Natick, MA, USA): VGG16, VGG19, ResNet18, and ResNet50. 

The networks were trained and compared using the thousands of brightfield images of spheroids, 

acquired by the different worldwide laboratories contributing to the MISpheroID project [29]. Then, 

a module for easily training new networks was integrated into the open-source tool AnaSP, releasing 

the second version of it. In particular, AnaSP 2.0 has been developed in MATLAB. It works with 

Windows, Macintosh, and UNIX-based systems, and it is freely provided with an 18-layer deep 

residual network (i.e., ResNet18) already integrated. Source code, compiled standalone versions for 

Windows, Mac, and Linux, a user manual, sample images, a video tutorial, and further documentation 

are freely available at: https://sourceforge.net/p/anasp. 
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The next sections of this work are organized as follows. Section 2 presents a short overview of the 

tools freely available for performing morphotypic analysis of spheroids. Section 3 describes AnaSP 

2.0 in detail. Finally, Section 4 reports the main conclusions of the work. 

 

2. Tools for morphotypic analysis 

 

Today, there are several freely available tools for segmenting microscopy images of spheroids and 

performing morphotypic analysis. This Section reports a brief description of the main features of 

AMIDA [11], AnaSP [12], INSIDIA [13], PCaAnalyser [14], SpheroidJ [15], SpheroidSizer [16], and 

TASI [17], then summarized in Table 1 and Table 2. Figure 1 and Figure 2 report printscreens of 

the tool’s graphical user interface (GUI).  

 

AMIDA [11]: AMIDA (Automated Morphometric Image Data Analysis, also internally called VTT 

Automated Cancer Cell Analysis - ACCA) is a standalone, freely available software solution for 

Windows systems. It supports large-scale, high-content screens based on 3D cultures. AMIDA works 

with both single and projected images as well as original stacks of confocal images and phase-

contrast (PC) images, but in the case of 3D inputs (x, y, z), the developers simply decided to restrict 

the quantitative analysis to 2D maximum projections. AMIDA represents a user-friendly tool with a 

segmentation stage based on two main parameters called sensitivity and threshold. The 

morphometric features implemented in AMIDA can be divided into three classes: (a) general, (b) 

morphological, and (c) functional. General features include information related to the size (area) of 

an object, its relation to neighbors (number of neighbors, shared boundaries with neighbors, closest 

neighbors), and the amount of cellular matter in relation to the local background (cell ratio, average 

ratio). Morphological features include measures for features typically associated with the phenotype 

(habitus) of multicellular spheroids, such as symmetry (roundness), contour roughness (measuring 

small surface features), and measures that indicate invasive processes (appendages). Finally, 

functional features estimate signal density, the number of cells per structure (cell number), the 

polarization of cells within the spheroid (‘‘hollowness’’), the average size of cells, and the ratio of 

cells relative to the size of the entire spheroid. 

 

AnaSP [12]: AnaSP (Analysis of SPheroids) is an open-source tool specifically designed for 

extracting morphological features starting from the analysis of 2D microscopy images of 3D 

multicellular spheroids. It works with Windows, Macintosh, and UNIX-based systems. In particular, 

it directly works with gray-level PC, differential interference contrast (DIC), and brightfield images 

generally characterized by a light background, but it can easily work even with fluorescent images 

just pre-inverted (to have a final light background) and converted to gray-level using common, freely 

available external tools like ImageJ [30] and Fiji [31]. AnaSP was created with the idea of providing 

an extremely user-friendly tool where the user can manually, semi-automatically, and automatically 

segment the spheroids, always having the opportunity to easily correct the segmentation obtained. 

AnaSP is a perfect solution for those who want to perform HCS experiments. The masks obtained 

(i.e., black and white masks with value 1 assigned to the pixels belonging to the foreground pixels of 

the spheroid) are automatically saved as output. They are then used for extracting the morphological 

features such as minor and major axes, equivalent diameter, perimeter, area, sphericity, and even the 

3D volume [32], which are computed simply by analyzing 2D images  [33], according to the ReViSP 

algorithm [34]. In case of more spheroids present in the image, AnaSP by default analyses the largest 

one, although a working modality considering more spheroids of similar size can be selected. The 

features computed are simply exported as Microsoft Excel tables, ready for further statistical 

analysis. 

 

INSIDIA [13]: INSIDIA (INvasion SpheroID ImageJ Analysis) is an open-source code implemented 

as a customizable macro running on Fiji. It enables HCS quantitative analysis of gray-level spheroid 

images with the output of a range of parameters defining the spheroid core and its invasive 
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characteristics. INSIDIA works with both 2D fluorescent and brightfield images. However, 

programming experience is required to be able to modify the original macro written in Java. The 

macro isolates the entire spheroid cellular mass from the image background with several user options 

able to address poorly contrasted images. INSIDIA distinguishes the spheroid core from the invasive 

edge and provides quantitative information describing growth and invasive behavior, for instance: 

the center of the spheroid, diameters, total area, envelope area, perimeter, circularity, shape factor, 

surface irregularity, and roughness. INSIDIA analysis is based on three sequential steps: (a) spheroid 

segmentation; (b) density profile / core-thresholding analysis; (c) density map analysis. The 

segmentation comprises a set of morphological operations that isolate the spheroid from the image 

background. Briefly, it is possible to declare that INSIDIA has two main segmentation options (a 

threshold-based and a Frangi-filtering-based one [35]), but the user does not have the opportunity to 

manually correct specific parts of the segmentation but just to adjust parameters that influence the 

entire contour. The output is a binary mask with a foreground intensity of 255 (white pixels) and a 

background intensity of 0 (black pixels). The mask is then internally used to distinguish and quantify 

the spheroid’s core from the invasive edge. 

PCaAnalyser [14]: PCaAnalyser (Prostate Cancer Analyser) is a Java-based program developed as 

an ImageJ plugin. It operates on 2D fluorescent images in one of several Bio-Formats [36]. The 

analysis undertaken by PCaAnalyser is composed of two major algorithmic interfaces. In the first 

step, the boundary of the cellular 3D spheroid is detected and the required masks are generated. In 

the second step, nuclei are detected and spheroid memberships are then predicted using the masks 

and the boundaries. Similar approaches are followed to detect and study cytoplasmic areas by 

segregating them from critical noise. The paradigm of PCaAnalyser, including the reporting 

component, has been designed to be flexible to enable the user to readily manipulate related analysis 

in a variety of ways, in addition to the default options. Concerning the efficiency of PCaAnalyser, a 

candidate-membership-based algorithm has been incorporated to speed up the nucleus-spheroid 

detection process, making the overall processing time considerably faster. As currently configured, 

the PCaAnalyser can quantify a range of morpho-biological parameters including the number of 

spheroids per image, the number of nuclei per spheroid, perimeter of the nucleus, nuclei-spheroid 

membership prediction, various function-based classifications of peripheral and non-peripheral areas 

to measure the expression of biomarkers and protein constituents, as well as effectively defining 

segregated cellular-objects for a range of signal-to-noise ratios. In addition, the PCaAnalyser 

architecture is highly flexible, operating as a single independent analysis, as well as in batch mode, 

which is essential for HCS. 

SpheroidJ [15]: SpheroidJ is a user-friendly, open-source ImageJ/Fiji plugin for segmenting PC, 

DIC, brightfield, and fluorescent images of spheroids. It is written in Java and Python. It is platform-

independent and requires the installation of a few external libraries, but only for using the provided 

deep learning model. Given an image containing a spheroid, SpheroidJ aims to produce a mask for 

the region that contains it. The authors implemented several segmentation strategies for different 

scenarios. They are based on the sequential application of several image processing techniques, such 

as edge detection or thresholding, and morphological operations like dilation or erosion. Specifically, 

the procedure can be split into two steps, contour generation, and contour refinement, and the user 

must define just five different parameters: (a) the number of iterations for the edge detector; (b) the 

thresholding method; (c) the number of iterations for the dilation and erosion operations; (d) a flag 

for enabling the fill holes operation; (e) a flag for enabling the watershed operation. However, those 

algorithms fail to generalize different conditions. By contrast, the deep learning model provided, 

constructed using the HRNet-Seg architecture, generalizes properly to a diversity of scenarios, but 

unfortunately, there is no procedure to train new deep learning models. In addition, SpheroidJ does 

not provide a simple way of visualizing and editing the segmentation results, and the features 

computed are limited to just area, area fraction, perimeter, circularity, Feret diameters, and Feret 

angles. 
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SpheroidSizer [16]: SpheroidSizer is an open-source, high-throughput image analysis script with 

GUI. It is optimized to process different batches of images of spheroids in the same session, but it 

currently works with just 2D brightfield images, each containing a single spheroid. Today, there is no 

ready-to-use standalone version of the tool, and the script for running it requires a MATLAB license 

to work, including licenses for the Signal Processing Toolbox, the Image Processing Toolbox, and 

the Parallel Computing Toolbox. The segmentation method used is adapted from the well-known 

Snakes active contour algorithm [37], which is especially suitable for images with uneven 

illumination and noisy background. It can also tolerate many usual artifacts, such as debris, 

originating from the specimen. However, the complimentary “Manual Initialize” and “Hand Draw” 

tools provide flexibility to SpheroidSizer in dealing with various types of spheroids and diverse 

quality images. SpheroidSizer just measures the major axis, minor axis, and volume (computed 

simply as V = 0.5 * major axis * minor axis * minor axis) of each spheroid, and provides the results 

in an output spreadsheet for easy manipulations in the subsequent data analysis. 

 

TASI [17]: TASI (Temporal Analysis of Spheroid Imaging) is a MATLAB script that allows 

investigators to objectively characterize spheroid growth and invasion dynamics. TASI is provided as 

open-source code without any GUI and as a standalone version. Accordingly, it requires a MATLAB 

license and programming experience to work. TASI performs spatiotemporal segmentation of 

spheroid cultures, extraction of features describing spheroid morpho-phenotypes, mathematical 

modeling of spheroid dynamics, and statistical comparisons of experimental conditions. It was 

designed for 3D (x, y, z) fluorescent images acquired in time-lapse, practically fluorescent 4D 

datasets (x, y, z, t). However, in the first internal step, the input 4D data is immediately reduced to a 

time sequence of 2D images (x, y, t). In particular, TASI currently uses a projection operation to 

reduce the z dimension to simplify image analysis. Then, the time sequence of 2D images is 

processed using an energy-minimizing graph cut segmentation algorithm to automatically delineate 

spheroid boundaries [38], but no manual opportunity is available for correcting parts of the 

segmentation. The masks obtained are then used for extracting the spatiotemporal features to 

describe spheroid growth, shape, and motion. In particular, TASI extracts several basic morphology 

features including area, perimeter, eccentricity, and intensity statistics. The complexity of the 

spheroid boundary is also measured. To quantify the spheroid's branching behavior, a “core radius” 

that captures the size of the main spheroid mass and an “invasive radius” that captures the extent of 

the projections are then computed. In particular, the core radius was defined as the radius of the 

largest circle that can be inscribed within the spheroid mask, centered at the mask centroid. The 

invasive radius was defined as the minimum circle that can encompass the entire spheroid, including 

any invasive branches. These radii roughly capture growth due to proliferation and growth due to 

invasion. The number of branches was further quantified using a skeletonization procedure. 

Morphological operations were applied to thin the mask to a skeletal structure, and the terminal 

endpoints were counted. This process robustly captures the tips of branching structures, even with 

complex shapes. 
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Fig. 1. Printscreen of the GUI of AnaSP 2.0. The tool has been extended with several functionalities, including different deep-

learning segmentation models and new morphological features. 
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Fig. 2. Printscreens of the different tools having a GUI. 
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Table 1: Freely available tools for performing morphotypic analysis of spheroids - characteristics (X = available/yes; O = not 

available/no). 

 AMIDA AnaSP INSIDIA PCaAnalyser  SpheroidJ SpheroidSizer TASI 

VERSION        

Year first release 2010 2015 2017 2013 2020 2013 2015 

Current version 1.95 2.0 2022 2013 1.0.1 2013 2018 

DOCUMENTATION        

User guide O X X X O X X 

Website O X X O X O X 

Video tutorial O X O O O X O 

Sample dataset X X X O X O O 

Open source O X X X X X O 

Implementation language C# MATLAB Java Java Java/Python MATLAB MATLAB 

USABILITY        

Input image format tif All common All common All common All common tif, jpg, bmp tif 

No programming experience required X X O X X O O 

User-friendly GUI X X X X X X O 

Intuitive visualisation settings X X X X X X X 

No commercial licences required X X X X X O O 

Portability on Win/Linux/Mac Only Win X X X X Only Win Only Win 

FUNCTIONALITY        

Image pre-processing X O O X O O O 

Brightfield/DIC/PC images X X X O X X X 

Fluorescence images X O X X O O O 

Manual segmentation O X O X O X O 

Automatic segmentation X X X X X X X 

Feature definition O X O O O O O 

OUTPUT        
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Segmentations X X X X X X X 

Features X X X X X X X 

Statistics X O O X O O X 

Table 2: Freely available tools for performing morphotypic analysis of spheroids - download link (last access 31/12/2022). 

AMIDA https://doi.org/10.1371/journal.pone.0096426.s010 

AnaSP https://sourceforge.net/p/anasp 

INSIDIA https://valentinapalmieri.wixsite.com/insidia 

PCaAnalyser  https://www.dropbox.com/s/qefb7bgo9wvranr/SuppMaterial.zip 

SpheroidJ https://github.com/joheras/SpheroidJ 

SpheroidSizer https://www.jove.com/files/ftp_upload/51639/SpheroidSizerJOVE.zip 

TASI http://github.com/cooperlab/TASI 

3. AnaSP 2.0

3.1. New functionalities 

Starting from the first version of AnaSP, we developed AnaSP 2.0 by integrating deep learning 

modules for training and using pre-trained networks to segment spheroids in PC, DIC, and 

brightfield images. In particular, (a) four different deep learning architectures are now available for 

training new segmentation models: VGG16, VGG19, ResNet18, and ResNet50. In addition, all the 

old functionalities in AnaSP 1.0 have been maintained, and most of them have been extended: (b) 

The input images can now be gray-level and RGB tif, tiff, png, bmp, and jpg images, with 8, 12 and 

16 bits; (c) The manual editing opportunity has been extended by introducing new opportunities 

connected to the mouse’s buttons (e.g. drag&drop, color change and deletion of the drawn contour); 

(d) The number of features estimated is now fifteen and precisely they are: (1) area, (2) circularity,

(3) compactness, (4) convexity, (5) equivalent diameter, (6) Feret aspect ratio, (7) Feret diameter

max, (8) Feret diameter max orthogonal distance, (9) Feret diameter min, (10) length major diameter

through centroid, (11) length minor diameter through centroid, (12) perimeter, (13) solidity, (14)

sphericity, (15) volume. In addition, the procedure for easily defining new (or customized) features

just by using a model template has been maintained. Definitions/equations of the currently estimated

features and a detailed description of the procedure to define new features are reported in the User

Manual. Figure 1 shows a printscreen of AnaSP 2.0’s GUI.

3.2. Validation 

3.2.1 Training 

To validate the deep-learning modules, we trained the 4 different networks, VGG16, VGG19, 

ResNet18, and ResNet50. A set of approximately 10000 2048x2048 RGB spheroid images and 

relative masks was used. The dataset was divided into 3 subsets: (a) the training set (80% of the total 
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images); (b) the validation set (10% of the total images); (c) the test set (10% of the total images). To 

reduce computational efforts, all the input images were rescaled to 8-bit gray-level 500x500 pixels 

and the masks were internally binary labeled into 2 categories, background and foreground (i.e., the 

spheroid). All the networks have been trained considering 7 epochs, with 20 batches per epoch and 

an initial learning rate of 0.001 that changes according to a piecewise learning rate schedule with a 

period of 2 and a factor of 0.5. The training dataset is shuffled after every epoch. Due to the different 

characteristics of the networks, the training time was different: VGG16 required approximately 6 

hours, VGG19 10 hours, ResNet18 15 hours, and ResNet50 20 hours. However, it is worth noting 

that the computational time and complexity related to the usage of the different trained networks are 

comparable. 

 

3.2.2 Validation 

  

The masks obtained with the 4 trained networks were compared with the segmentations obtained 

using AnaSP 1.0 (Figure 3).  
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Fig. 3: Top line: original images. Middle lines: masks obtained with the different trained networks. Bottom line: masks 

obtained with the threshold-based algorithm traditionally available in AnaSP. 

Normalized confusion matrix, mean accuracy (MA) and average intersection over union (IoU, [39]) 

were computed. The Normalized confusion matrix is a matrix that shows on its diagonal the 

percentage of pixels correctly classified as background and foreground, and outside of the diagonal, 

the percentage of misclassified pixels. Mean accuracy is the ratio of correctly classified pixels in 

each class to the total number of pixels, averaged over all the classes. Average IoU is the area of 

overlap between the predicted segmentation and the reference one, divided by the area of union 

between the predicted segmentation and the reference one. This parameter is calculated by averaging 

the IoU values of the different classes. In numbers, IoU is defined as the ratio between TP (true 

positives) and the sum of TP (true positives), FP (false positives), and FN (false negatives), where 

TP are the foreground pixels classified in the correct class; FP are the pixels classified as foreground 

but background in the reference image; FN are the pixels classified as background but foreground in 

the reference image. 

3.2.3 Comparison with AnaSP 1.0 

According to the different metrics, all the trained networks obtained nice and pretty comparable 

scores (Table 3).  

Table 3: Metric values obtained during the network validation. 

VGG16 VGG19 ResNet18 ResNet50 

TP 0.99 0.99 0.99 0.99 

TN 0.91 0.81 0.91 0.74 

FP 0.09 0.19 0.09 0.26 

FN 0.01 0.01 0.01 0.01 

MA 0.97 0.93 0.95 0.87 

IoU 0.91 0.90 0.92 0.86 

Firstly, by looking at the TP values, it is evident that all the trained networks perfectly segmented the 

foreground pixels. Considering the FP values, it is possible to see that VGG19 and ResNet50 

misclassified 20-30% of background pixels. On the other hand, VGG16 and ResNet18 show higher 

performances also for background segmentation, having comparable results with each other. Looking 

at the MA and the average IoU, it is clear that ResNet50 was the worst, while the others appeared 

quite similar. Combining the information, it resulted that VGG16 and ResNet18 were the most 

reliable networks. Obtaining better results for ResNet18 with respect to ResNet50 is something not 

surprising: the dataset is composed just of images with “black” spheroids on a “white” background. 

Especially for these cases, increasing complexity and depth (i.e. number of layers) of artificial neural 

networks do not necessarily mean having better segmentations due to overfitting and many other 

problems [40]. However, some general qualitative considerations can be made and Figure 4 shows 

some representative images. For example, it is worth remarking that the segmentation often fails with 

spheroids that have a necrotic core. This is due to the fact that the center of the spheroid in the image 

is the same color as the background, making it almost impossible for the network to recognize it. In 

general, the trained networks showed difficulties segmenting images in which the spheroids have a 

color that is similar to the background. When the spheroid touches the image border, the 
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segmentation typically fails. Then, VGG16 typically fails if the background is not uniform. 

Concluding, ResNet18 is the one with the best overall performance in segmenting spheroids. 

Accordingly, we released AnaSP 2.0 by including the trained ResNet18. 

Fig. 4: Top line: original images representative of different segmentation problems. Other lines: masks obtained with the 

different trained networks. 

4. Conclusions

Today, cancer multicellular spheroids are widely used in several HCS experiments of 

chemotherapeutic drugs and radiotherapy treatments. Several tools are available for extracting 

morphological features and performing morphotypic analysis. The bottleneck of the process is the 
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segmentation stage, but CNNs specifically trained for segmenting images of spheroids can solve the 

problem. 

In this work, four different deep CNNs (i.e. VVG16, VGG19, ResNet18, ResNet50) were 

implemented, trained and tested. All of them obtained very interesting results and ResNet18 ranked 

as the best-performing. Accordingly, besides designing and integrating into AnaSP a new module for 

easily training new networks, we released a new version of it (i.e. AnaSP 2.0) by directly including a 

ResNet18 trained by using the thousands of images acquired by the different laboratories 

contributing to the MISpheroID project, and available for accurately segmenting new brightfield 

images of spheroids.  

AnaSP 2.0 is distributed as an open-source tool, freely available at: https://sourceforge.net/p/anasp. 
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